

# Topping Topoi

An introduction to sheaf and Grothendieck topos

---

Yichen Liu, Yuan Yao, Gene Tsai

Topology in and via Logic 2026

# Table of contents

## 1. Introduction to Sheaf

Presheaves and Sheaves

Grothendieck topology

## 2. Sheafifying Presheaves

Stalks and Germs

Sheafification theorem

## 3. From Sheaves to Topoi

Plus construction

Grothendieck topos

# Introduction to Sheaf

---

# How do we study structures of spaces?

Given a topological space  $(X, \mathcal{T})$ . We assign to each open set  $U$  a set of elements  $s$  which satisfy certain property  $\phi$  within  $U$ :

$$U \longmapsto F(U) = \{s \mid U \models \phi(s)\}$$

Examples:

- $F(U) = C^0(U, \mathbb{R})$  (continuous real-valued functions on  $U$ )
- $F(U) = B(U, \mathbb{R})$  (bounded real-valued functions on  $U$ )
- $F(U) = K(U, \mathbb{R})$  (constant real-valued functions on  $U$ )

Section of  $F$  over  $U$

$$s \in F(U)$$

## What do we want the assignment to conform to?

For any open sets  $U, V \in \mathcal{T}$  such that  $U \subseteq V$ , there is a restriction map  $\rho_U^V : F(V) \rightarrow F(U)$  such that

1. for all open set  $U$ ,  $\rho_U^U = id_{F(U)}$
2. for all open sets  $U \subseteq V \subseteq W$ ,  $\rho_U^V \circ \rho_V^W = \rho_U^W$

The restriction maps for the previous examples are simply restricting the domain of functions.

Notation: for open sets  $U \subseteq V$  and  $s \in F(V)$ ,  $s|_U := \rho_U^V(s)$

### Presheaf on a topological space

A pair  $(F, (\rho_U^V)_{U \subseteq V})$  where  $F$  is a map from  $\mathcal{T}$  to **Sets** and  $(\rho_U^V : F(V) \rightarrow F(U))$  is a collection of maps satisfying the above conditions

# Relation between a section and its restrictions

Given a presheaf  $(F, \rho)$  and open set  $U$ . It would be nice that we can reconstruct a section of  $U$  by assembling its restrictions on an open cover of  $U$ . This property could be formalised as

## Sheaf condition

Given an open set  $U$  and an open cover  $(U_i)_{i \in I}$  of it.

1. For  $s, t \in F(U)$ , if  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then  $s = t$ .
2. For any family of sections  $(s_i \in F(U_i))_{i \in I}$  such that  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$  for all  $i, j \in I$ , there is an  $s \in F(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$ .

## Sheaf of a topolocial space

A sheaf is a presheaf satisfying sheaf property.

# Rephrasing definitions in the language of category theory

A topology  $\mathcal{T}$  on  $X$  is a poset ordered by  $\subseteq$ , which can be seen as a category where there is at most one morphism between any two objects.

## Presheaf on $(X, \mathcal{T})$

A functor  $F \in [\mathcal{T}^{op}, \mathbf{Sets}]$

## Sheaf on $(X, \mathcal{T})$

A presheaf  $F \in [\mathcal{T}^{op}, \mathbf{Sets}]$  such that for each open set  $U$  and open cover  $(U_i)_{i \in I}$  of  $U$ , the diagram

$$F(U) \xrightarrow{\langle F(U \hookrightarrow U_i) \rangle_{i \in I}} \prod_{i \in I} F(U_i) \xrightarrow{\begin{smallmatrix} F(U_i \cap U_j \hookrightarrow U_i) \circ \pi_i \\ F(U_i \cap U_j \hookrightarrow U_j) \circ \pi_j \end{smallmatrix}} \prod_{(i,j) \in I \times I} F(U_i \cap U_j)$$

forms an equalizer.

# Generalizing Open Covers - Sieves

- Recall that in topological space  $(X, \mathcal{T})$ , the collection of all open subsets of  $U$  is all the inclusion maps from some object to  $U$ .
- In fact, this forms a presheaf  $\text{Hom}_{\mathcal{T}}(-, U)$ .
- So categorically, we think of a collection of open subsets of  $U$  as a "*subpresheaf*" of  $\text{Hom}_{\mathcal{T}}(-, U)$ .
- In order for these collections to be a presheaf, they must be downward closed, and they are so-called "*sieves*."

## Sieve

A sieve  $S$  on an object  $C$  of category  $\mathcal{C}$  is a subpresheaf of  $\text{Hom}_{\mathcal{C}}(-, C)$ . That is,  $S \subseteq \{f \mid \text{cod}(f) = C\}$  such that

$$f \in S \implies f \circ g \in S$$

for all  $g$  composable with  $f$ .

# Generalizing Open Covers - Pullback Sieve

- Given an open set  $U$ , a collection of its subsets  $\{U_i\}_{i \in I}$ , and an open subset  $V \subseteq U$ .
- If the collection is a sieve on  $U$ , then the collection of intersections  $\{U_i \cap V\}_{i \in I}$  is a subcollection of  $\{U_i\}_{i \in I}$  that forms a sieve on  $V$ .
- So we can generalize the notion of intersection with a subset as follows.

## Pullback of Sieve

Given a sieve  $S$  on  $C$  and a morphism  $f: D \rightarrow C$ . The pullback of  $S$  along  $f$  is a sieve on  $D$  given by

$$f^*(S) := \{g: E \rightarrow D \mid f \circ g \in S\}.$$

# Generalizing Open Covers - Grothendieck Topology

## Grothendieck topology [1]

A Grothendieck topology  $\text{Cov}$  on category  $\mathcal{C}$  assigns a sieve  $\text{Cov}(C)$  to each object  $C$  in  $\mathcal{C}$ , satisfying the follows:

1. (Stability): For each  $f: D \rightarrow C$  in  $\mathcal{C}$  and  $S \in \text{Cov}(C)$ ,  
 $f^*(S) \in \text{Cov}(D)$ .
2. (Local Characterization): For any  $S \in \text{Cov}(C)$  and any sieve  $R$  on  $C$ , if  $f^*(R) \in \text{Cov}(D)$  for all  $f: D \rightarrow C$  in  $S$ , then  $R \in \text{Cov}(C)$ .
3. (Maximality): For each object  $C$  in  $\mathcal{C}$ ,  
 $\max(C) := \{f \mid \text{cod}(f) = C\} \in \text{Cov}(C)$ .

It can be verified that the usual notion of open cover in topological space  $(X, \mathcal{T})$  gives a Grothendieck topology: if  $S = \{U_i \hookrightarrow U\}_{i \in I}$  is a sieve on  $U$ , then

$$S \in \text{Cov}(U) \iff \bigcup_{i \in I} U_i = U.$$

# An example of a presheaf that fails sheaf condition

## Example. (bounded functions)

- Consider  $(\mathbb{R}, \mathcal{T}_{Euc})$  and  $B \in [\mathcal{T}_{Euc}^{op}, \mathbf{Sets}]$  (the presheaf of bounded functions on  $\mathbb{R}$ .)
- Let  $(U_i = (i - 1, i + 1))_{i \in \mathbb{Z}}$  which is an open cover of  $\mathbb{R}$ .
- For each  $i \in \mathbb{Z}$ , define  $f_i : U_i \rightarrow \mathbb{R}$  by  $f_i(x) = x$ , then it is obvious that  $f_i \in B(U_i)$ .
- Moreover, we have  $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$  for all  $i, j \in \mathbb{Z}$ .
- However, the only function  $f$  on  $\mathbb{R}$  such  $f|_{U_i} = f_i$  for all  $i$  is the identity function, which is not in  $B(\mathbb{R})$ .

## An example of a presheaf that fails sheaf condition

The example shows that not all local property can be "*glued*" together to form a global property.

### Question

Is there a canonical way to turn a presheaf into sheaf?

# Sheafification !

# Sheafifying Presheaves

---

# Stalks

Given a presheaf  $F \in \text{PSh}(\mathcal{T})$

## Stalk

The stalk of  $F$  at  $x$  is the filtered colimit

$$F_x := \underset{U \ni x}{\text{colim}} F(U) \quad .$$

(Note that  $\{U \in \mathcal{T} \mid x \in U\}$  is indeed a prime filter.)

*Remark.*

$$F_x \cong \left( \bigsqcup_{U \ni x} F(U) \right) / \sim_x$$

where  $s \in F(U) \sim_x t \in F(V)$  iff there is some open set  $W \subseteq U \cap V$  such that  $x \in W$  and  $s|_W = t|_W$ .

## Germ

Given a presheaf  $F$ , an open set  $U$ , and a point  $x \in U$ . There is a mapping

$$F(U) \longrightarrow F_x$$

$$s \longmapsto s_x$$

sending a section to an equivalence class of sections over  $\sim_x$ . Such  $s_x$  is called the germ of  $s$  at  $x$ .

# Properties about germs and stalks

Let  $(X, \mathcal{T})$  be a topological space, and  $F \in \text{Sh}(\mathcal{T})$ .

## Lemma

1. The map

$$\begin{aligned} F(U) &\rightarrow \prod_{x \in U} F_x \\ s &\mapsto (s_x)_{x \in U} \end{aligned}$$

is injective.

2. Suppose  $U \in \mathcal{T}$  and  $s, t \in F(U)$ . If  $s_x = t_x \in F_x$  for all  $x \in U$ , then  $s = t \in F(U)$ .

[3]

# Properties about germs and stalks

Let  $(X, \mathcal{T})$  be a topological space,  $F, G \in \text{Sh}(\mathcal{T})$ , and  $\varphi : F \rightarrow G$  be a morphism of sheaves (i.e. a natural transformation.)

## Proposition

If the induced map

$$\varphi_x : F_x \longrightarrow G_x$$

$$s_x = [(U, s)] \longmapsto [(U, \varphi_U(s))] = \varphi_U(s)_x$$

is an bijection for all  $x \in X$ , then  $\varphi$  is an isomorphism.

[3]

# Sheafification

Let  $(X, \mathcal{T})$  be a topological space.

## Theorem (Sheafification)

The inclusion  $\iota : \text{Sh}(\mathcal{T}) \hookrightarrow \text{PSh}(\mathcal{T})$  admits a left adjoint  $L : \text{PSh}(\mathcal{T}) \rightarrow \text{Sh}(\mathcal{T})$  called the *sheafification*.

# Universal Property of Sheafification

Given a presheaf  $F$ , a sheaf  $G$ , and a morphism  $\sigma : F \rightarrow \iota(G)$ . There is a unique  $\eta : L(F) \rightarrow G$  such that the diagram

$$\begin{array}{ccc} F & \xrightarrow{\quad} & \iota(L(F)) \\ \sigma \searrow & & \downarrow \exists! \eta \\ & & \iota(G) \end{array}$$

commutes.

This can be understood as that  $L(F)$  is a certain kind of "best approximation of  $F$ " in the sheaf category.

# Constructing Sheafification

## Construction of $L$

Given a presheaf  $F \in \text{PSh}(\mathcal{T})$ .

$$L(F)(U) := \left\{ (s_x)_{x \in U} \in \prod_{x \in U} F_x \middle| \begin{array}{l} \text{for all } x \in U, \\ \text{there is some } U_x \subseteq U \text{ containing } x \\ \text{such that there is some } s' \in F(U_x) \\ \text{such that } s_y = s'_y \text{ for all } y \in U_x \end{array} \right\}$$

- By taking the elements of stalks, we ensure that the sheafification satisfies the locality condition of sheaf.
- By requiring the RHS condition, we make these elements “glueable”.

## From Sheaves to Topoi

---

# Historical motivation of generalizing Sheaves to Topoi

- In mid-20th century, Weil conjecture is a research focus of algebraic geometry.

# Historical motivation of generalizing Sheaves to Topoi

- In mid-20th century, Weil conjecture is a research focus of algebraic geometry.
- A key step in proof of the conjecture was to construct étale cohomology.

# Historical motivation of generalizing Sheaves to Topoi

- In mid-20th century, Weil conjecture is a research focus of algebraic geometry.
- A key step in proof of the conjecture was to construct étale cohomology.
- Zariski topology is a convenient topology to assign on algebraic varieties, but it is too coarse.

# Historical motivation of generalizing Sheaves to Topoi

- In mid-20th century, Weil conjecture is a research focus of algebraic geometry.
- A key step in proof of the conjecture was to construct étale cohomology.
- Zariski topology is a convenient topology to assigned on algebraic varieties, but it is too coarse.
- Grothendieck came up with *Grothendieck topos*, which is a category of sheaves involving *Grothendieck topology*.

# Historical motivation of generalizing Sheaves to Topoi

- In mid-20th century, Weil conjecture is a research focus of algebraic geometry.
- A key step in proof of the conjecture was to construct étale cohomology.
- Zariski topology is a convenient topology to assigned on algebraic varieties, but it is too coarse.
- Grothendieck came up with *Grothendieck topos*, which is a category of sheaves involving *Grothendieck topology*.
- These tools enables the construction of the desired cohomology.

## Recall: Grothendieck topology

### Grothendieck topology

A Grothendieck topology  $\text{Cov}$  on category  $\mathcal{C}$  assigns a sieve  $\text{Cov}(C)$  to each object  $C$  in  $\mathcal{C}$ , satisfying the follows:

1. (Stability): For each  $f: D \rightarrow C$  in  $\mathcal{C}$  and  $S \in \text{Cov}(C)$ ,  
 $f^*(S) \in \text{Cov}(D)$ .
2. (Local Characterization): For any  $S \in \text{Cov}(C)$  and any sieve  $R$  on  $C$ , if  $f^*(R) \in \text{Cov}(D)$  for all  $f: D \rightarrow C$  in  $S$ , then  $R \in \text{Cov}(C)$ .
3. (Maximality): For each object  $C$  in  $\mathcal{C}$ ,  
 $\max(C) := \{f \mid \text{cod}(f) = C\} \in \text{Cov}(C)$ .

### Site

A pair  $(\mathcal{C}, \text{Cov})$  where  $\mathcal{C}$  is a category and  $\text{Cov}$  is a Grothendieck topology on  $\mathcal{C}$ .

A site is *small* if  $\mathcal{C}$  is small.

## Sheaves on a site [2]

Given a presheaf  $F \in [\mathcal{C}^{op}, \text{Sets}]$ .

### Matching family

Given a sieve  $S$  on object  $C$  in  $\mathcal{C}$ . A matching family assigns to each  $f : D \rightarrow C$  in  $S$  an  $x_f \in F(D)$  such that

$$F(g)(x_f) = x_{f \circ g} \quad \forall g : E \rightarrow D.$$

### Amalgamation

An amalgamation for the above matching family is an element  $x \in F(C)$  such that  $F(f)(x) = x_f$  for all  $f \in S$ .

### Sheaf on a site

$F$  is a sheaf on site  $(\mathcal{C}, \text{Cov})$  iff for all object  $C \in \mathcal{C}$  and  $S \in \text{Cov}(C)$ , every matching family of  $S$  has a unique amalgamation.

# Reformulating Sheaves via Limits

- Let  $S$  be a covering sieve on  $C$ .
- Notice that the set of "matching families" for  $S$  is precisely the limit of  $\mathcal{F}$  restricted to the sieve.
- The "amalgamation" condition says the map from  $\mathcal{F}(C)$  to this limit is a bijection.

## Limit Definition of a Sheaf

A presheaf  $\mathcal{F}$  is a sheaf if and only if for every object  $C$  and every covering sieve  $S \in \text{Cov}(C)$ , the canonical map is a bijection:

$$\mathcal{F}(C) \xrightarrow{\cong} \lim_{\substack{D \rightarrow C \\ f}} \mathcal{F}(D)$$

*This perspective allows us to "force" the sheaf condition using limits and colimits.*

# The Plus Construction ( $\mathcal{F}^\dagger$ )

To turn a presheaf into a sheaf, we construct a new presheaf  $\mathcal{F}^\dagger$  that "fixes" the failure of the limit condition.

## Construction

For any presheaf  $\mathcal{F}$  and object  $C$ , define:

$$\mathcal{F}^\dagger(C) := \operatorname{colim}_{S \in \operatorname{Cov}(C)} \left( \lim_{\substack{D \rightarrow C \in S \\ f}} \mathcal{F}(D) \right)$$

where the colimit is taken over the poset of covering sieves (ordered by reverse inclusion).

- **Inner Limit:** Constructs "potential sections" (matching families) for a specific cover  $S$ .
- **Outer Colimit:** Identifies matching families that agree on a finer cover (germs of sections).

## Step 1: Separated Presheaves

The first application of the plus construction ensures uniqueness of amalgamations, but not necessarily existence.

### Separated Presheaf

A presheaf  $\mathcal{F}$  is **separated** if the map  $\mathcal{F}(C) \rightarrow \prod_{f \in S} \mathcal{F}(\text{dom}(f))$  is injective for every cover  $S$ . (Equivalently, matching families have *at most one* amalgamation).

### First Application

For any presheaf  $\mathcal{F}$ , the presheaf  $\mathcal{F}^\dagger$  is separated.

*The plus construction removes "ghost elements" that vanish locally.*

## Step 2: The Sheafification Theorem

### Second Application

If  $\mathcal{F}$  is already a **separated** presheaf, then  $\mathcal{F}^\dagger$  is a **sheaf**.

- Therefore, applying the construction twice yields the sheafification.

### Theorem (Sheafification Theorem)

The inclusion functor  $\text{Sh}(\mathcal{C}) \hookrightarrow \text{Fun}(\mathcal{C}^{\text{op}}, \text{Set})$  has a left adjoint  $L$ , called **sheafification**. It is given by:

$$L(\mathcal{F}) := (\mathcal{F}^\dagger)^\dagger$$

Furthermore,  $L$  preserves finite limits (is left exact).

## Grothendieck topos

The collection of sheaves on  $(\mathcal{C}, \text{Cov})$  together with natural transformations between them forms a category  $\text{Sh}(\mathcal{C}, \text{Cov})$ .

A Grothendieck topos is a category that is equivalent to  $\text{Sh}(\mathcal{C}, \text{Cov})$  for some small site  $(\mathcal{C}, \text{Cov})$ .

# Giraud's Theorem: Characterization of Topoi

## Theorem (Giraud)

Let  $\mathcal{X}$  be a category. The following conditions are equivalent:

1.  $\mathcal{X}$  is a Grothendieck topos (i.e.,  $\mathcal{X} \simeq \text{Sh}(\mathcal{C}, \text{Cov})$  for a small site  $(\mathcal{C}, \text{Cov})$ ).
2. There exists a small category  $\mathcal{C}$  and a fully faithful embedding  $\mathcal{X} \hookrightarrow \text{Fun}(\mathcal{C}^{\text{op}}, \text{Set})$  admitting a left adjoint  $L$  that preserves finite limits.
3.  $\mathcal{X}$  satisfies **Giraud's Axioms**:
  - (G1)  $\mathcal{X}$  admits finite limits.
  - (G2) Every equivalence relation in  $\mathcal{X}$  is effective.
  - (G3)  $\mathcal{X}$  has disjoint small coproducts.
  - (G4) Effective epimorphisms are stable under pullback.
  - (G5) Coproducts differ commute with pullback (universality).
  - (G6)  $\mathcal{X}$  has a set of generators.

[4]

## Characterization (2): Topos as a Localization

- We can interpret the left adjoint  $L : \text{Fun}(\mathcal{C}^{\text{op}}, \text{Set}) \rightarrow \mathcal{X}$  as a **localization functor**.
- The sheafification process essentially "forces" certain morphisms to become isomorphisms.

### Inverting Local Isomorphisms

Let  $\Sigma$  be the collection of **local isomorphisms** (morphisms  $\alpha : \mathcal{F} \rightarrow \mathcal{G}$  that become isomorphisms locally on a cover).

- The functor  $L$  maps every  $\alpha \in \Sigma$  to an isomorphism in  $\mathcal{X}$ .
- Conversely, any functor inverting  $\Sigma$  factors uniquely through  $L$ .

- Thus, we view the topos  $\mathcal{X}$  as the category obtained from presheaves by **formally inverting** all locally equivalent morphisms.
- **Summary:** A Grothendieck topos is a *left exact localization* of a presheaf category.

# Generalization to $\infty$ -Topoi

- The characterization of a topos as a **left exact localization** (Condition 2) is the most robust definition for generalization.
- It allows us to pass from "sets" to "spaces" (homotopy types) seamlessly.

## The $\infty$ -Categorical Analogy

- **1-Topos:** A category  $\mathcal{X}$  is a Grothendieck topos if it is a left exact localization of a presheaf category  $\text{Fun}(\mathcal{C}^{\text{op}}, \text{Set})$ .
- **$\infty$ -Topos:** An  $\infty$ -category  $\mathcal{X}$  is an  $\infty$ -topos if it is a left exact localization of an  $\infty$ -category of presheaves  $\text{Fun}(\mathcal{C}^{\text{op}}, \mathcal{S})$ , where  $\mathcal{S}$  is the  $\infty$ -category of spaces (animas).

- In this framework, "sheafification" becomes a localization functor  $L$  that enforces **homotopical descent**.
- This definition avoids the immediate complexity of "sites with homotopy coherent covers," making the theory much cleaner to set up.

# $\infty$ -Topoi: Descent for Sheaves of Spaces

Let  $\mathcal{X}$  be a small  $\infty$ -category equipped with a Grothendieck topology, and  $F : \mathcal{X}^{op} \rightarrow \mathcal{S}$  be a presheaf of spaces.

**The Cech Cosimplicial Object:** Given a cover  $\mathcal{U} = \{U_i \rightarrow X\}$  in  $\mathcal{X}$ , the evaluation of  $F$  on the Cech nerve  $\check{C}(\mathcal{U})$  yields a cosimplicial diagram in  $\mathcal{S}$ :

$$F(X) \longrightarrow \prod_i F(U_i) \rightrightarrows \prod_{i,j} F(U_{ij}) \rightrightarrows \dots$$

## The Descent Condition (Sheaf Property)

The presheaf  $F$  is a **sheaf** if for every cover  $\mathcal{U}$ , the map to the (homotopy) limit is a (weak) homotopy equivalence of spaces:

$$F(X) \xrightarrow{\sim} \lim_{\Delta} F(\check{C}(\mathcal{U}))$$

(Here, the limit is taken in the  $\infty$ -category  $\mathcal{S}$ )

# Topos as a Semantics for Logic

- Giraud's theorem tells us exactly what categorical structures exist in every topos.
- Remarkably, these structures correspond one-to-one with the operations of first-order intuitionistic logic.
- This allows us to view a topos not just as a "generalized space," but as a "mathematical universe" where logic can be performed.

| Categorical Structure (Giraud) | Logical Operation                                        |
|--------------------------------|----------------------------------------------------------|
| Finite Limits (G1)             | Conjunction ( $\wedge$ ), Truth ( $\top$ ), Substitution |
| Coproducts (G3)                | Disjunction ( $\vee$ ), Falsehood ( $\perp$ )            |
| Subobject Lattices             | Propositional Logic                                      |
| Adjoints to Pullback           | Quantifiers ( $\exists, \forall$ )                       |

# Interpreting IPL in topos

Fix propositional variables  $\text{Var} = \{p, q, \dots\}$ . Formulas:

$$\varphi ::= p \mid \top \mid \perp \mid (\varphi \wedge \psi) \mid (\varphi \vee \psi) \mid (\varphi \rightarrow \psi), \quad \neg \varphi := (\varphi \rightarrow \perp).$$

1. What should be the “truth object” of propositions?
2. How should the “truth object” of propositions interact with connectives?

## 1. What should be the “truth object” of propositions?

$$[\![\varphi]\!] \in \text{Sub}(1) \cong \mathcal{E}(1, \Omega),$$

$\text{Sub}(1)$ : poset of subobjects of 1, with  $A \leq B$  if  $A \hookrightarrow B$

In  $\mathcal{E} = \text{PSh}(\mathcal{C})$ :

- 1 is the stage-wise terminal object, i.e. sending each  $C \in \mathcal{C}$  to singleton  $\{*\}$  (with unique restriction).
- A subobject of 1 (a subterminal) is a subpresheaf  $P$  of 1 with each section either  $\{*\}$  or  $\emptyset$  stable under restriction, meaning:

$$P(C) = \{*\} \text{ and } \alpha : D \rightarrow C \implies P(D) = \{*\}.$$

2. How should the “truth object” of propositions interact with connectives? –What operations do we have on  $\text{Sub}(1)$ ?

## Proposition

In any topos (in particular in  $\text{PSh}(\mathcal{C})$  or  $\text{Sh}(\mathcal{C})$ ), the poset  $\text{Sub}(1)$  forms a Heyting algebra. Concretely, for subobjects  $A \hookrightarrow 1$  and  $B \hookrightarrow 1$ :

- $\top := 1 \hookrightarrow 1$ ,  $\perp := 0 \hookrightarrow 1$ .
- $A \sqcap B := A \times B \hookrightarrow 1$  (pullback / intersection).
- $A \sqcup B := \text{im}(A \amalg B \rightarrow 1) \hookrightarrow 1$  (join / union).
- $A \Rightarrow B$  is the *largest* subobject  $C \hookrightarrow 1$  such that  $C \sqcap A \leq B$ , i.e. for all  $D \hookrightarrow 1$ ,

$$D \leq (A \Rightarrow B) \iff (D \sqcap A) \leq B.$$

## Valuation

A valuation is a function

$$v : \text{Var} \rightarrow \text{Sub}(1) :: p \mapsto v(p) =: \llbracket p \rrbracket \hookrightarrow 1.$$

## Valuation

A valuation is a function

$$v : \text{Var} \rightarrow \text{Sub}(1) :: p \mapsto v(p) =: \llbracket p \rrbracket \hookrightarrow 1.$$

Then the valuation  $v$  can be extended to all formulas, i.e.

$\llbracket - \rrbracket : \text{Form}_{\text{IPL}} \rightarrow \text{Sub}(1)$ , via the algebraic operations on  $\text{Sub}(1)$  inductively. For example:

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \sqcap \llbracket \psi \rrbracket, \quad \llbracket \varphi \vee \psi \rrbracket = \llbracket \varphi \rrbracket \sqcup \llbracket \psi \rrbracket,$$

## Presheaf semantics: stages and forcing

---

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{op}}$ .

# Presheaf semantics: stages and forcing

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ .

## Forcing at an object $C \in \mathcal{C}$

For a subterminal  $P \hookrightarrow 1$ , define

$$C \Vdash P \iff P(C) = \{*\}$$

Since subterminals are stable under restriction, presheaf forcing is *persistent*: if  $C \Vdash P$  and  $\alpha : D \rightarrow C$  then  $D \Vdash P$ .

# Presheaf semantics: stages and forcing

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ .

## Forcing at an object $C \in \mathcal{C}$

For a subterminal  $P \hookrightarrow 1$ , define

$$C \Vdash P \iff P(C) = \{*\}$$

Now each proposition  $\varphi$  is interpreted to a *subterminal*  $\llbracket \varphi \rrbracket \hookrightarrow 1$ .

Inductively, for  $\varphi, \psi$ :  $C \Vdash \llbracket \varphi \vee \psi \rrbracket \iff ?$

# Presheaf semantics: stages and forcing

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ .

## Forcing at an object $C \in \mathcal{C}$

For a subterminal  $P \hookrightarrow 1$ , define

$$C \Vdash P \iff P(C) = \{*\}$$

Now each proposition  $\varphi$  is interpreted to a *subterminal*  $\llbracket \varphi \rrbracket \hookrightarrow 1$ .

Inductively, for  $\varphi, \psi$ :  $C \Vdash \llbracket \varphi \vee \psi \rrbracket \iff C \Vdash \llbracket \varphi \rrbracket \sqcup \llbracket \psi \rrbracket$ , where  $\llbracket \varphi \rrbracket \sqcup \llbracket \psi \rrbracket$  is the join of  $\llbracket \varphi \rrbracket$  and  $\llbracket \psi \rrbracket$  in Heyting algebra  $\text{Sub}(1)$ .

# Presheaf semantics: stages and forcing

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ .

## Forcing at an object $C \in \mathcal{C}$

For a subterminal  $P \hookrightarrow 1$ , define

$$C \Vdash P \iff P(C) = \{*\}$$

Now each proposition  $\varphi$  is interpreted to a *subterminal*  $\llbracket \varphi \rrbracket \hookrightarrow 1$ .

Inductively, for  $\varphi, \psi$ :  $C \Vdash \llbracket \varphi \vee \psi \rrbracket \iff C \Vdash \llbracket \varphi \rrbracket \sqcup \llbracket \psi \rrbracket$ , where  $\llbracket \varphi \rrbracket \sqcup \llbracket \psi \rrbracket$  is the join of  $\llbracket \varphi \rrbracket$  and  $\llbracket \psi \rrbracket$  in Heyting algebra  $\text{Sub}(1)$ .

$$\begin{aligned} (A \sqcup B)(C) &\cong \text{im}(A(C) \amalg B(C) \rightarrow 1(C)) \subseteq \{*\} \\ (A \sqcup B)(C) = \{*\} &\iff A(C) \amalg B(C) \neq \emptyset \\ &\iff A(C) = \{*\} \text{ or } B(C) = \{*\} \\ &\iff C \Vdash A \text{ or } C \Vdash B \end{aligned}$$

# Presheaf semantics: stages and forcing

Consider a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ .

## Forcing at an object $C \in \mathcal{C}$

For a subterminal  $P \hookrightarrow 1$ , define

$$C \Vdash P \iff P(C) = \{*\}$$

Now each proposition  $\varphi$  is interpreted to a *subterminal*  $\llbracket \varphi \rrbracket \hookrightarrow 1$ .

Inductively, for  $\varphi, \psi$ :

$$C \Vdash \llbracket \varphi \rightarrow \psi \rrbracket \iff C \Vdash \llbracket \varphi \rrbracket \Rightarrow \llbracket \psi \rrbracket$$

for Heyting implication in  $\text{Sub}(1)$ .

$$\begin{aligned} (A \Rightarrow B)(C) = \{*\} &\iff \forall f : D \rightarrow C, (A(D) = \{*\} \Rightarrow B(D) = \{*\}) \\ &\iff \forall f : D \rightarrow C, (D \Vdash A \Rightarrow D \Vdash B). \end{aligned}$$

# Presheaf semantics: forcing clauses

For any presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C})$ ,  $C \in \mathcal{C}$ , valuation  $v$  and formula  $\varphi$ , define  $\mathcal{E}, C, v \models \varphi$  iff  $C \Vdash \llbracket \varphi \rrbracket^v$ , we get the following semantics:

## Presheaf semantics

$\mathcal{E}, C, v \models \top$  always,  $\mathcal{E}, C, v \models \perp$  never

$\mathcal{E}, C, v \models p \iff C \Vdash v(p) = \llbracket p \rrbracket^v$ ,  $p \in \text{Var}$

Inductively:

$\mathcal{E}, C, v \models (\varphi \wedge \psi)$  iff  $(\mathcal{E}, C, v \models \varphi \text{ and } \mathcal{E}, C, v \models \psi)$ .

$\mathcal{E}, C, v \models (\varphi \vee \psi)$  iff  $(\mathcal{E}, C, v \models \varphi \text{ or } \mathcal{E}, C, v \models \psi)$ .

$\mathcal{E}, C, v \models (\varphi \rightarrow \psi)$  iff  $\forall \alpha : D \rightarrow C, (\mathcal{E}, D, v \models \varphi \text{ implies } \mathcal{E}, D, v \models \psi)$ .

And negation is derived as:

$C, v \models \neg \varphi$  iff  $\forall \alpha : D \rightarrow C, D, v \not\models \varphi$

## Validity

---

For a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ : a formula  $\varphi$  is valid over  $\mathcal{E}$  (denoted by  $\mathcal{E} \models \varphi$ ) if for all valuations  $v$ , and for all  $C \in \mathcal{C}$ ,  $C, v \models \varphi$ .

For a class  $\mathcal{E}$  of presheaf toposes:  $\varphi$  is valid over  $\mathcal{E}$  if for all  $\mathcal{E} \in \mathcal{E}$ ,  $\mathcal{E} \models \varphi$ .

Denote the collection of valid formulas on a topos by

$$\text{Log}(\mathcal{E}) = \{\varphi \mid \mathcal{E} \models \varphi\}$$

and similarly

$$\text{Log}(\mathcal{E}) = \{\varphi \mid \forall \mathcal{E} \in \mathcal{E}, \mathcal{E} \models \varphi\}$$

## Validity

For a presheaf topos  $\mathcal{E} = \text{PSh}(\mathcal{C}) = \mathbf{Sets}^{\mathcal{C}^{\text{op}}}$ : a formula  $\varphi$  is valid over  $\mathcal{E}$  (denoted by  $\mathcal{E} \models \varphi$ ) if for all valuations  $v$ , and for all  $C \in \mathcal{C}$ ,  $C, v \models \varphi$ .

For a class  $\mathcal{E}$  of presheaf toposes:  $\varphi$  is valid over  $\mathcal{E}$  if for all  $\mathcal{E} \in \mathcal{E}$ ,  $\mathcal{E} \models \varphi$ .

Denote the collection of valid formulas on a topos by

$$\text{Log}(\mathcal{E}) = \{\varphi \mid \mathcal{E} \models \varphi\}$$

and similarly

$$\text{Log}(\mathcal{E}) = \{\varphi \mid \forall \mathcal{E} \in \mathcal{E}, \mathcal{E} \models \varphi\}$$

## Soundness

**IPC**  $\subseteq \text{Log}(\text{PSh}(\mathcal{C}))$  for any small category  $\mathcal{C}$ .

## Example: Kripke semantics for IPC

---

Let  $\mathcal{F} := (W, R)$  be a Kripke frame for **IPC**, i.e.  $R$  is a partial order on  $W$ . Think of  $\mathcal{F}$  as a category with a unique arrow  $u \rightarrow w$  iff  $wRu$ .

Consider  $\mathcal{E} = \text{PSh}(\mathcal{F}) = \mathbf{Sets}^{\mathcal{F}^{\text{op}}}$ .

## Example: Kripke semantics for IPC

Let  $\mathcal{F} := (W, R)$  be a Kripke frame for **IPC**, i.e.  $R$  is a partial order on  $W$ . Think of  $\mathcal{F}$  as a category with a unique arrow  $u \rightarrow w$  iff  $wRu$ . Consider  $\mathcal{E} = \text{PSh}(\mathcal{F}) = \mathbf{Sets}^{\mathcal{F}^{\text{op}}}$ .

### Valuations as persistent sets of worlds

The map  $P \hookrightarrow 1 \mapsto \{w \mid P(w) = \{\ast\}\}$  is a bijection between  $\text{Sub}_{\text{PSh}(\mathcal{F})}(1)$  and  $R$ -persistent subsets of  $W$ ; under this bijection,  $[\![\varphi]\!]_v$  corresponds to the Kripke truth set of  $\varphi$  for the induced valuation  $V$ .

## Example: Kripke semantics for IPC

Let  $\mathcal{F} := (W, R)$  be a Kripke frame for **IPC**, i.e.  $R$  is a partial order on  $W$ . Think of  $\mathcal{F}$  as a category with a unique arrow  $u \rightarrow w$  iff  $wRu$ . Consider  $\mathcal{E} = \text{PSh}(\mathcal{F}) = \mathbf{Sets}^{\mathcal{F}^{\text{op}}}$ .

### Valuations as persistent sets of worlds

The map  $P \hookrightarrow 1 \mapsto \{w \mid P(w) = \{\ast\}\}$  is a bijection between  $\text{Sub}_{\text{PSh}(\mathcal{F})}(1)$  and  $R$ -persistent subsets of  $W$ ; under this bijection,  $[\![\varphi]\!]_v$  corresponds to the Kripke truth set of  $\varphi$  for the induced valuation  $V$ .

A valuation  $v$  in  $\mathcal{E}$  assigns each variable  $p$  a subobject  $v(p) \hookrightarrow 1$ .

Stability under restriction implies the persistence of presheaf forcing, i.e.

$$v(p)(w) = \{\ast\} \text{ and } u \rightarrow w \implies v(p)(u) = \{\ast\}$$

Therefore,  $V(p) := \{w \in W \mid v(p)(w) = \{\ast\}\}$  is a *R-upset* (a valuation in a Kripke model for **IPC**).

## Example: Kripke semantics for IPC

### Proposition

Let  $\mathcal{F} = (W, R)$  be a Kripke frame and  $\mathcal{E} = \text{PSh}(\mathcal{F})$ . Given a presheaf valuation  $v : \text{Var} \rightarrow \text{Sub}_{\mathcal{E}}(1)$ , let  $V$  be the induced Kripke valuation

$$V(p) := \{ w \in W \mid v(p)(w) = \{*\} \}.$$

Then for every formula  $\varphi \in \text{IPL}$ ,

$$V(\varphi) = \{ w \in W \mid \llbracket \varphi \rrbracket_v(w) = \{*\} \},$$

i.e.  $\mathcal{F}, V, w \models \varphi$  iff  $\llbracket \varphi \rrbracket_v(w) = \{*\}$  iff  $\mathcal{E}, w, v \models_{\text{PSh}} \varphi$ .

## Example: Kripke semantics for IPC

### Proposition

Let  $\mathcal{F} = (W, R)$  be a Kripke frame and  $\mathcal{E} = \text{PSh}(\mathcal{F})$ . Given a presheaf valuation  $v : \text{Var} \rightarrow \text{Sub}_{\mathcal{E}}(1)$ , let  $V$  be the induced Kripke valuation

$$V(p) := \{ w \in W \mid v(p)(w) = \{*\} \}.$$

Then for every formula  $\varphi \in \text{IPL}$ ,

$$V(\varphi) = \{ w \in W \mid \llbracket \varphi \rrbracket_v(w) = \{*\} \},$$

i.e.  $\mathcal{F}, V, w \models \varphi$  iff  $\llbracket \varphi \rrbracket_v(w) = \{*\}$  iff  $\mathcal{E}, w, v \models_{\text{PSh}} \varphi$ .

So presheaf semantics on poset presheaves is just Kripke semantics for intuitionistic logic.

## Example: Kripke semantics for IPC

### Proposition

Let  $\mathcal{F} = (W, R)$  be a Kripke frame and  $\mathcal{E} = \text{PSh}(\mathcal{F})$ . Given a presheaf valuation  $v : \text{Var} \rightarrow \text{Sub}_{\mathcal{E}}(1)$ , let  $V$  be the induced Kripke valuation

$$V(p) := \{ w \in W \mid v(p)(w) = \{*\} \}.$$

Then for every formula  $\varphi \in \text{IPL}$ ,

$$V(\varphi) = \{ w \in W \mid \llbracket \varphi \rrbracket_v(w) = \{*\} \},$$

i.e.  $\mathcal{F}, V, w \models \varphi$  iff  $\llbracket \varphi \rrbracket_v(w) = \{*\}$  iff  $\mathcal{E}, w, v \models_{\text{PSh}} \varphi$ .

### Corollary

$$\text{IPC} = \text{Log} \left( \{ \text{PSh}(\mathcal{P}) \mid \mathcal{P} \text{ is a poset} \} \right) = \text{Log} \left( \{ \text{PSh}(\mathcal{C}) \mid \mathcal{C} \text{ is small} \} \right)$$

## Sheaf semantics

---

For a sheaf topos  $\text{Sh}(\mathcal{C}, \text{Cov})$ , idea is the same: evaluate variables into  $\text{Sub}(1)$ , compute composite formulas via algebraic operations in  $\text{Sub}(1)$ .

But in sheaf topos:

## Sheaf semantics

---

For a sheaf topos  $\text{Sh}(\mathcal{C}, \text{Cov})$ , idea is the same: evaluate variables into  $\text{Sub}(1)$ , compute composite formulas via algebraic operations in  $\text{Sub}(1)$ .

But in sheaf topos:

- 1 remains the same (all stages agree with each other)

# Sheaf semantics

For a sheaf topos  $\text{Sh}(\mathcal{C}, \text{Cov})$ , idea is the same: evaluate variables into  $\text{Sub}(1)$ , compute composite formulas via algebraic operations in  $\text{Sub}(1)$ .

But in sheaf topos:

- 1 remains the same (all stages agree with each other)
- $P \in \text{Sub}(1) : \mathcal{C} \rightarrow \{\emptyset, \{*\}\}$  satisfying:
  1. Stable under restriction
  2. **Sheaf condition**: for any covering sieve  $S \in \text{Cov}(\mathcal{C})$ , if

$$\left( \forall \alpha : D \rightarrow C \in S, P(D) = \{*\} \right) \implies P(C) = \{*\}.$$

Because for subterminals: there is at most one amalgamation for a matching family, i.e.  $\{*\}$ . So the amalgamation condition reduces to the existence of such an amalgamation.

# Sheaf semantics

For a sheaf topos  $\text{Sh}(\mathcal{C}, \text{Cov})$ , idea is the same: evaluate variables into  $\text{Sub}(1)$ , compute composite formulas via algebraic operations in  $\text{Sub}(1)$ .

But in sheaf topos:

- 1 remains the same (all stages agree with each other)
- $P \in \text{Sub}(1) : \mathcal{C} \rightarrow \{\emptyset, \{\ast\}\}$  satisfying:
  1. Stable under restriction
  2. **Sheaf condition**: for any covering sieve  $S \in \text{Cov}(\mathcal{C})$ , if

$$\left( \forall \alpha : D \rightarrow C \in S, P(D) = \{\ast\} \right) \implies P(C) = \{\ast\}.$$

Because for subterminals: there is at most one amalgamation for a matching family, i.e.  $\{\ast\}$ . So the amalgamation condition reduces to the existence of such an amalgamation.

- Heyting operations on  $\text{Sub}(1)$ ?
  - Only  $\vee$  changes

# Sheaf semantics: $\vee$ becomes local

In  $\text{PSh}(\mathcal{C})$ :

$$C, v \models (\varphi \vee \psi) \text{ iff } (C, v \models \varphi \text{ or } C, v \models \psi).$$

In  $\text{Sh}(\mathcal{C}, \text{Cov})$ , local truth on covers implies global truth:

$$\begin{aligned} C, v \models (\varphi \vee \psi) \text{ iff } & \exists (\alpha_i : D_i \rightarrow C)_{i \in I} \in \text{Cov}(C) \\ & \text{s.t. } \forall i, (D_i, v \models \varphi \text{ or } D_i, v \models \psi) \end{aligned}$$

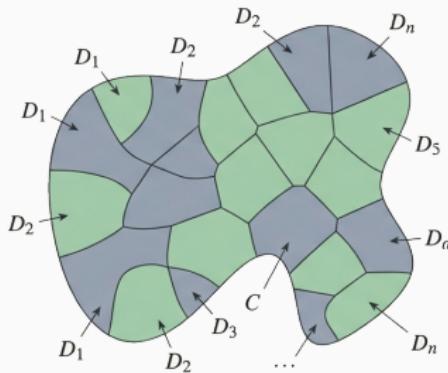


Image generated by NotebookLM

## Sheaf semantics: $\vee$ becomes local

In  $\text{PSh}(\mathcal{C})$ :

$$C, v \models (\varphi \vee \psi) \text{ iff } (C, v \models \varphi \text{ or } C, v \models \psi).$$

In  $\text{Sh}(\mathcal{C}, \text{Cov})$ , local truth on covers implies global truth:

$$\boxed{\begin{aligned} C, v \models (\varphi \vee \psi) &\text{ iff } \exists (\alpha_i : D_i \rightarrow C)_{i \in I} \in \text{Cov}(C) \\ &\text{s.t. } \forall i, (D_i, v \models \varphi \text{ or } D_i, v \models \psi) \end{aligned}}$$

In  $\text{Sh}(\mathcal{C}, \text{Cov})$  the join in Sub(1) is computed as the image of a coproduct (involving colimits), but colimits in  $\text{Sh}(\mathcal{C}, \text{Cov})$  are obtained by sheafifying presheaf colimits. Therefore  $\vee$  becomes local (witnessed only after passing to a cover).

# Sheaf on a space

Recall: For a topological space  $(X, \mathcal{T})$ ,  $\text{Sh}(\mathcal{T})$  denotes the sheaf on  $(\mathcal{T}, \subseteq)$ . A covering sieve in  $\text{Cov}(U)$  is exactly the  $\subseteq$ -downward closure of an open over of  $U$ .

## Proposition

For any  $\text{Sh}(\mathcal{T})$ , there is a bijection  $\Theta : \text{Sub}(1) \rightarrow \mathcal{T}$ .

For each open  $U \in \mathcal{T}$ , define the subterminal sheaf  $1_U \hookrightarrow 1$  by

$$1_U(V) := \begin{cases} \{*\} & \text{if } V \subseteq U, \\ \emptyset & \text{otherwise.} \end{cases}$$

Conversely, for a subobject  $A \hookrightarrow 1$  in  $\text{Sh}(X)$ , let

$$U_A := \bigcup \{ V \in \mathcal{T} \mid A(V) = \{*\} \}.$$

$U \mapsto (1_U \hookrightarrow 1)$  and  $(A \hookrightarrow 1) \mapsto U_A$  are mutually inverse.

## Sheaf on a space

---

The poset  $(\mathcal{T}, \subseteq)$  carries a Heyting structure  $(\mathcal{T}, X, \emptyset, \cup, \cap, \Rightarrow)$ .

## Sheaf on a space

The poset  $(\mathcal{T}, \subseteq)$  carries a Heyting structure  $(\mathcal{T}, X, \emptyset, \cup, \cap, \Rightarrow)$ .

The Heyting implication  $U \Rightarrow V$  is given by the *largest* open set  $W$  such that  $W \cap U \subseteq V$ . Equivalently,

$$W \subseteq (U \Rightarrow V) \iff (W \cap U) \subseteq V,$$

so in particular

$$U \Rightarrow V = \text{int}((X \setminus U) \cup V)$$

and negation is derived as

$$\neg U := (U \Rightarrow \emptyset) = \text{int}(X \setminus U)$$

## Sheaf on a space

The poset  $(\mathcal{T}, \subseteq)$  carries a Heyting structure  $(\mathcal{T}, X, \emptyset, \cup, \cap, \Rightarrow)$ .

The Heyting implication  $U \Rightarrow V$  is given by the *largest* open set  $W$  such that  $W \cap U \subseteq V$ . Equivalently,

$$W \subseteq (U \Rightarrow V) \iff (W \cap U) \subseteq V,$$

so in particular

$$U \Rightarrow V = \text{int}((X \setminus U) \cup V)$$

and negation is derived as

$$\neg U := (U \Rightarrow \emptyset) = \text{int}(X \setminus U)$$

There's more!

$\Theta$  is a Heyting isomorphism between  $(\text{Sub}_{\text{Sh}(\mathcal{T})}(1), \top, \perp, \sqcup, \sqcap, \Rightarrow)$  and  $(\mathcal{T}, X, \emptyset, \cup, \cap, \Rightarrow)$ .

## Valuation

A valuation  $o$  assigns each propositional variable an open set:

$$o : \text{Var} \rightarrow \mathcal{T} :: p \mapsto o(p) = \llbracket p \rrbracket^o$$

Extend inductively to all formulas, i.e. define  $\llbracket - \rrbracket : \text{Form}_{\text{IPC}} \rightarrow \mathcal{T}$  by

$$\llbracket \top \rrbracket = X, \quad \llbracket \perp \rrbracket = \emptyset, \quad \llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \quad \llbracket \varphi \vee \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket,$$

$$\llbracket \varphi \rightarrow \psi \rrbracket = \text{int}((X \setminus \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket), \quad \llbracket \neg \varphi \rrbracket = \text{int}(X \setminus \llbracket \varphi \rrbracket).$$

For an open set  $U \in \mathcal{T}$ ,

$$U, o \models \varphi \text{ iff } U \subseteq \llbracket \varphi \rrbracket.$$

A formula  $\varphi$  is *valid in*  $(X, \mathcal{T})$  iff  $\llbracket \varphi \rrbracket = X$  for every valuation.

## Sheaf semantics on spaces = topological semantics

Using the Heyting isomorphism  $\text{Sub}_{\mathcal{E}}(1) \cong \mathcal{T}$ , every sheaf valuation  $v$  in  $\text{Sub}_{\mathcal{E}}(1)$  naturally corresponds to a topological valuation  $o$  in  $\mathcal{T}$ .

Then for every  $\varphi \in \text{IPL}$  and every open stage  $U \in \mathcal{T}$ ,

$$U, o \models_{tp} \varphi \iff U \subseteq \llbracket \varphi \rrbracket^o \iff \mathcal{E}, U, v \models_{\text{Sh}} \varphi.$$

For the inductive step for  $\vee$ , we make use of the local feature of covers.

For any  $A, B \in \mathcal{T}$ ,  $U \subseteq A \cup B$  iff:

there is an open cover  $(U_i)_{i \in I}$  of  $U$  s.t.  $\forall i \in I$ :  $U_i \subseteq A$  or  $U_i \subseteq B$

which matches the sheaf semantic clause for  $\vee$ .

In particular, taking  $U = X$ , for each valuation  $o$  (equivalently the induced  $v$ ), we have  $\llbracket \varphi \rrbracket^o = X \iff \llbracket \varphi \rrbracket^v(X) = \{*\}$ ; hence  $(X, \mathcal{T}) \models \varphi$  iff  $\text{Sh}(\mathcal{T}) \models \varphi$ .

# Sheaf semantics on spaces = topological semantics

## Theorem (Tarski)

**IPC** =  $\text{Log}(\{\text{Sh}(X, \mathcal{T}) \mid (X, \mathcal{T}) \text{ is a topological space}\})$

## Kripke–Joyal semantics

In any (elementary) topos  $\mathcal{E}$ , the truth values  $\text{Sub}_{\mathcal{E}}(1)$  form a Heyting algebra, so the internal propositional logic of  $\mathcal{E}$  is intuitionistic.

- classical only when  $\text{Sub}_{\mathcal{E}}(1)$  is Boolean ( $\neg\neg = \text{id}$ ), e.g. when the Grothendieck topology is the dense/double-negation topology, defined by

$$\text{Cov}(C) = \{R \in \Omega(C) : (\forall f : C' \rightarrow C) (\exists g : C'' \rightarrow C') (fg \in R)\}$$

# Kripke-Joyal semantics

More generally, every elementary topos  $\mathcal{E}$  carries an internal first-order intuitionistic logic with logical connectives/quantifiers interpreted by the corresponding categorical constructions (pullbacks, images, exponentials, adjoints). Kripke–Joyal semantics is the standard “external” forcing presentation that lets us read off this internal logic stagewise.

Set structure:

- Domain: a set  $M$
- Relation symbol: subset
- Assignment: elements  $\vec{x} \mapsto \vec{a}$
- Formula: “derived” subset  
 $[\![\varphi(x)]\!] \subseteq M$

$$\begin{array}{ccccc} & [\![\varphi(x)]\!] & \longrightarrow & 1 & \\ & \downarrow & & & \downarrow \text{true} \\ 1 & \xrightarrow{f} & M & \xrightarrow{\chi_{[\![\varphi(x)]\!]}} & \{0, 1\} \end{array}$$

Topos structure:

- Domain: an object  $X$
- Relation symbol: subobject
- Assignment: generalized elements
- Formula  $\varphi$ : “derived” subobjects

$$\begin{array}{ccccc} & [\![\varphi(x)]\!] & \longrightarrow & 1 & \\ & \downarrow & & & \downarrow \text{true} \\ U & \xrightarrow{f} & X & \xrightarrow{\chi_{\varphi}} & \Omega \end{array}$$

Questions?

## References i

-  M. Artin, A. Grothendieck, and J.-L. Verdier.  
*Théorie des Topos et Cohomologie Étale des Schémas (SGA 4)*,  
volume 269 of *Lecture Notes in Mathematics*.  
Springer-Verlag, 1972.
-  O. Caramello.  
*Theories, Sites, Toposes*.  
Oxford University Press, London, England, 2017.
-  D. Clausen and L. Hesselholt.  
**Scheme theory**.  
*Lecture Notes*, 2022.
-  J. Lurie.  
**Categorical logic**.  
*Lecture Notes*, 2018.