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Introduction to Sheaf



How do we study structures of spaces?

Given a topological space (X, T ). We assign to each open set U a set
of elements s which satisfy certain property φ within U:

U 7−→ F(U) = {s | U ⊨ φ(s)}

Examples:

• F(U) = C0(U,R) (continuous real-valued functions on U)
• F(U) = B(U,R) (bounded real-valued functions on U)
• F(U) = K(U,R) (constant real-valued functions on U)

Section of F over U

s ∈ F(U)
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What do we want the assignment to conform to?

For any open sets U, V ∈ T such that U ⊆ V, there is a restriction map
ρVU : F(V) → F(U) such that

1. for all open set U, ρUU = idF(U)
2. for all open sets U ⊆ V ⊆ W , ρVU ◦ ρWV = ρWU

The restriction maps for the previous examples are simply restricting
the domain of functions.

Notation: for open sets U ⊆ V and s ∈ F(V), s|U := ρVU(s)

Presheaf on a topological space
A pair (F, (ρVU)U⊆V) where F is a map from T to Sets and
(ρVU : F(V) → F(U)) is a collection of maps satisfying the above
conditions
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Relation between a section and its restrictions

Given a presheaf (F, ρ) and open set U. It would be nice that we can
reconstruct a section of U by assembling its restrictions on an open
cover of U. This property could be formalised as

Sheaf condition
Given an open set U and an open cover (Ui)i∈I of it.

1. For s, t ∈ F(U), if s|Ui = t|Ui for all i ∈ I, then s = t.
2. For any family of sections (si ∈ F(Ui))i∈I such that
si|Ui∩Uj = sj|Ui∩Uj for all i, j ∈ I, there is an s ∈ F(U) such that
s|Ui = si for all i ∈ I.

Sheaf of a topolocial space
A sheaf is a presheaf satisfying sheaf property.
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Rephrasing definitions in the language of category theory

A topology T on X is a poset ordered by ⊆, which can be seen as a
category where there is at most one morphism between any two
objects.

Presheaf on (X, T )

A functor F ∈ [T op, Sets]

Sheaf on (X, T )

A presheaf F ∈ [T op, Sets] such that for each open set U and open
cover (Ui)i∈I of U, the diagram

F(U)
∏

i∈I F(Ui)
∏

(i,j)∈I×I F(Ui ∩ Uj)
⟨F(U↪→Ui)⟩i∈I F(Ui∩Uj↪→Ui)◦πi

F(Ui∩Uj↪→Uj)◦πj

forms an equalizer.
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Generalizing Open Covers - Sieves

• Recall that in topological space (X, T ), the collection of all open
subsets of U is all the inclusion maps from some object to U.

• In fact, this forms a presheaf HomT (−,U).
• So categorically, we think of a collection of open subsets of U as
a ”subpresheaf” of HomT (−,U).

• In order for these collections to be a presheaf, they must be
downward closed, and they are so-called ”sieves.”

Sieve
A sieve S on an object C of category C is a subpresheaf of
HomC(−, C). That is, S ⊆ {f | cod(f) = C} such that

f ∈ S =⇒ f ◦ g ∈ S

for all g composable with f.
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Generalizing Open Covers - Pullback Sieve

• Given an open set U, a collection of its subsets {Ui}i∈I, and an
open subset V ⊆ U.

• If the collection is a sieve on U, then the collection of
intersections {Ui ∩ V}i∈I is a subcollection of {Ui}i∈I thats forms
a sieve on V.

• So we can generalize the notion of intersection with a subset as
follows.

Pullback of Sieve
Given a sieve S on C and a morphism f : D→ C. The pullback of S
along f is a sieve on D given by

f∗(S) := {g : E→ D | f ◦ g ∈ S}.

7



Generalizing Open Covers - Grothendieck Topology

Grothendieck topology [1]
A Grothendieck topology Cov on category C assigns a sieve Cov(C)
to each object C in C, satisfying the follows:

1. (Stability): For each f : D→ C in C and S ∈ Cov(C),
f∗(S) ∈ Cov(D).

2. (Local Characterization): For any S ∈ Cov(C) and any sieve R on
C, if f∗(R) ∈ Cov(D) for all f : D→ C in S, then R ∈ Cov(C).

3. (Maximality): For each object C in C,
max(C) := {f | cod(f) = C} ∈ Cov(C).

It can be verivied that the usual notion of open cover in topological
space (X, T ) gives a Grothendieck topology: if S = {Ui ↪→ U}i∈I is a
sieve on U, then

S ∈ Cov(U) ⇐⇒
⋃
i∈I

Ui = U.
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An example of a presheaf that fails sheaf condition

Example. (bounded functions)

• Consider (R, TEuc) and B ∈ [T op
Euc, Sets] (the presheaf of bounded

functions on R.)
• Let (Ui = (i− 1, i+ 1))i∈Z which is an open cover of R.
• For each i ∈ Z, define fi : Ui → R by fi(x) = x, then it is obvious
that fi ∈ B(Ui).

• Moreover, we have fi|Ui∩Uj = fj|Ui∩Uj for all i, j ∈ Z.
• However, the only function f on R such f|Ui = fi for all i is the
identity function, which is not in B(R).
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An example of a presheaf that fails sheaf condition

The example shows that not all local property can be ”glued”
together to form a global property.

Question
Is there a canonical way to turn a presheaf into sheaf?
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Sheafification !
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Sheafifiying Presheaves



Stalks

Given a presheaf F ∈ PSh(T )

Stalk
The stalk of F at x is the filtered colimit

Fx := colim
U∋x

F(U) .

(Note that {U ∈ T | x ∈ U} is indeed a prime filter.)

Remark.

Fx ∼=

(⊔
U∋x

F(U)
)/

∼x

where s ∈ F(U) ∼x t ∈ F(V) iff there is some open set W ⊆ U ∩ V such
that x ∈ W and s|W = t|W.
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Germs

Germ
Given a presheaf F, an open set U, and a point x ∈ U. There is a
mapping

F(U) −→ Fx
s 7−→ sx

sending a section to an equivalence class of sections over ∼x.
Such sx is called the germ of s at x.
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Properties about germs and stalks

Let (X, T ) be a topological space, and F ∈ Sh(T ).

Lemma
1. The map

F(U) →
∏
x∈U

Fx

s 7→ (sx)x∈U

is injective.
2. Suppose U ∈ T and s, t ∈ F(U). If sx = tx ∈ Fx for all x ∈ U, then
s = t ∈ F(U).

[3]

13



Properties about germs and stalks

Let (X, T ) be a topological space, F,G ∈ Sh(T), and ϕ : F→ G be a
morphism of sheaves (i.e. a natural transformation.)

Proposition
If the induced map

ϕx : Fx −→ Gx
sx = [(U, s)] 7−→ [(U, ϕU(s))] = ϕU(s)x

is an bijection for all x ∈ X, then ϕ is an isomorphism. [3]
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Sheafification

Let (X, T ) be a topological space.

Theorem (Sheafification)
The inclusion ι : Sh(T ) ↪→ PSh(T ) admits a left adjoint
L : PSh(T ) → Sh(T ) called the sheafification.
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Universal Property of Sheafification

Given a presheaf F, a sheaf G, and a morphism σ : F→ ι(G). There is
a unique η : L(F) → G such that the diagram

F ι(L(F))

ι(G)
σ ∃!η

commutes.

This can be understood as that L(F) is a certain kind of ”best
approximation of F” in the sheaf category.
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Constructing Sheafification

Construction of L
Given a presheaf F ∈ PSh(T ).

L(F)(U) :=

(sx)x∈U ∈
∏
x∈U

Fx

∣∣∣∣∣∣∣∣∣∣
for all x ∈ U,
there is some Ux ⊆ U containing x
such that there is some s′ ∈ F(Ux)
such that sy = s′y for all y ∈ Ux



• By taking the elements of stalks, we ensure that the
sheafification satisfies the locality condition of sheaf.

• By requiring the RHS condition, we make these elements
”glueable”.
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From Sheaves to Topoi



Historical motivation of generalizing Sheaves to Topoi

• In mid-20th century, Weil conjecture is a research focus of
algebraic geometry.

• A key step in proof of the conjecture was to construct étale
cohomology.

• Zariski topology is a convenient topology to assigned on
algebraic varieties, but it is too coarse.

• Grothendieck came up with Grothendieck topos, which is a
category of sheaves involving Grothendieck topology.

• These tools enables the construction of the desired cohomology.
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Recall: Grothendieck topology

Grothendieck topology
A Grothendieck topology Cov on category C assigns a sieve Cov(C)
to each object C in C, satisfying the follows:

1. (Stability): For each f : D→ C in C and S ∈ Cov(C),
f∗(S) ∈ Cov(D).

2. (Local Characterization): For any S ∈ Cov(C) and any sieve R on
C, if f∗(R) ∈ Cov(D) for all f : D→ C in S, then R ∈ Cov(C).

3. (Maximality): For each object C in C,
max(C) := {f | cod(f) = C} ∈ Cov(C).

Site
A pair (C,Cov) where C is a category and Cov is a Grothendieck
topology on C.
A site is small if C is small.
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Sheaves on a site [2]

Given a presheaf F ∈ [Cop, Sets].

Matching family
Given a sieve S on object C in C. A matching family assigns to each
f : D→ C in S an xf ∈ F(D) such that

F(g)(xf) = xf◦g ∀g : E→ D.

Amalgamation
An amalgamation for the above matching family is an element
x ∈ F(C) such that F(f)(x) = xf for all f ∈ S.

Sheaf on a site
F is a sheaf on site (C,Cov) iff for all object C ∈ C and S ∈ Cov(C),
every matching family of S has a unique amalgamation.
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Reformulating Sheaves via Limits

• Let S be a covering sieve on C.
• Notice that the set of ”matching families” for S is precisely the
limit of F restricted to the sieve.

• The ”amalgamation” condition says the map from F(C) to this
limit is a bijection.

Limit Definition of a Sheaf
A presheaf F is a sheaf if and only if for every object C and every
covering sieve S ∈ Cov(C), the canonical map is a bijection:

F(C)
∼=−→ lim

D
f−→C∈S

F(D)

This perspective allows us to ”force” the sheaf condition using limits
and colimits.
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The Plus Construction (F †)

To turn a presheaf into a sheaf, we construct a new presheaf F† that
”fixes” the failure of the limit condition.

Construction
For any presheaf F and object C, define:

F†(C) := colim
S∈Cov(C)

(
lim

D
f−→C∈S

F(D)
)

where the colimit is taken over the poset of covering sieves
(ordered by reverse inclusion).

• Inner Limit: Constructs ”potential sections” (matching families)
for a specific cover S.

• Outer Colimit: Identifies matching families that agree on a finer
cover (germs of sections).
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Step 1: Separated Presheaves

The first application of the plus construction ensures uniqueness of
amalgamations, but not necessarily existence.

Separated Presheaf
A presheaf F is separated if the map F(C) →

∏
f∈S F(dom(f)) is

injective for every cover S. (Equivalently, matching families have at
most one amalgamation).

First Application
For any presheaf F , the presheaf F† is separated.

The plus construction removes ”ghost elements” that vanish locally.
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Step 2: The Sheafification Theorem

Second Application
If F is already a separated presheaf, then F† is a sheaf.

• Therefore, applying the construction twice yields the
sheafification.

Theorem (Sheafification Theorem)
The inclusion functor Sh(C) ↪→ Fun(Cop, Set) has a left adjoint L,
called sheafification. It is given by:

L(F) := (F†)†

Furthermore, L preserves finite limits (is left exact).
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Grothendieck topos

Grothendieck topos
The collection of sheaves on (C,Cov) together with natural
transformations between them forms a category Sh(C,Cov).
A Grothendieck topos is a category that is equivalent to Sh(C,Cov)
for some small site (C,Cov).
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Giraud’s Theorem: Characterization of Topoi

Theorem (Giraud)
Let X be a category. The following conditions are equivalent:

1. X is a Grothendieck topos (i.e., X ' Sh(C,Cov) for a small site
(C,Cov)).

2. There exists a small category C and a fully faithful embedding
X ↪→ Fun(Cop, Set) admitting a left adjoint L that preserves
finite limits.

3. X satisfies Giraud’s Axioms:
(G1) X admits finite limits.
(G2) Every equivalence relation in X is effective.
(G3) X has disjoint small coproducts.
(G4) Effective epimorphisms are stable under pullback.
(G5) Coproducts differ commute with pullback (universality).
(G6) X has a set of generators.

[4]
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Characterization (2): Topos as a Localization

• We can interpret the left adjoint L : Fun(Cop, Set) → X as a
localization functor.

• The sheafification process essentially ”forces” certain
morphisms to become isomorphisms.

Inverting Local Isomorphisms
Let Σ be the collection of local isomorphisms (morphisms
α : F → G that become isomorphisms locally on a cover).

• The functor L maps every α ∈ Σ to an isomorphism in X .
• Conversely, any functor inverting Σ factors uniquely through L.

• Thus, we view the topos X as the category obtained from
presheaves by formally inverting all locally equivalent
morphisms.

• Summary: A Grothendieck topos is a left exact localization of a
presheaf category.
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Generalization to∞-Topoi

• The characterization of a topos as a left exact localization
(Condition 2) is the most robust definition for generalization.

• It allows us to pass from ”sets” to ”spaces” (homotopy types)
seamlessly.

The∞-Categorical Analogy
• 1-Topos: A category X is a Grothendieck topos if it is a left exact
localization of a presheaf category Fun(Cop, Set).

• ∞-Topos: An∞-category X is an∞-topos if it is a left exact
localization of an∞-category of presheaves Fun(Cop,S), where
S is the∞-category of spaces (animas).

• In this framework, ”sheafification” becomes a localization
functor L that enforces homotopical descent.

• This definition avoids the immediate complexity of ”sites with
homotopy coherent covers,” making the theory much cleaner to
set up. 28



∞-Topoi: Descent for Sheaves of Spaces

Let X be a small∞-category equipped with a Grothendieck topology,
and F : X op → S be a presheaf of spaces.

The Cech Cosimplicial Object: Given a cover U = {Ui → X} in X , the
evaluation of F on the Cech nerve Č(U) yields a cosimplicial diagram
in S :

F(X) −→
∏
i

F(Ui) ⇒
∏
i,j

F(Uij) →→→ . . .

The Descent Condition (Sheaf Property)
The presheaf F is a sheaf if for every cover U , the map to the
(homotopy) limit is a (weak) homotopy equivalence of spaces:

F(X) ∼−→ lim
∆
F(Č(U))

(Here, the limit is taken in the∞-category S)

29



Topos as a Semantics for Logic

• Giraud’s theorem tells us exactly what categorical structures
exist in every topos.

• Remarkably, these structures correspond one-to-one with the
operations of first-order intuitionistic logic.

• This allows us to view a topos not just as a ”generalized space,”
but as a ”mathematical universe” where logic can be performed.

Categorical Structure (Giraud) Logical Operation
Finite Limits (G1) Conjunction (∧), Truth (>), Substitution
Coproducts (G3) Disjunction (∨), Falsehood (⊥)
Subobject Lattices Propositional Logic
Adjoints to Pullback Quantifiers (∃, ∀)
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Interpreting IPL in topos

Fix propositional variables Var = {p, q, . . . }. Formulas:

φ ::= p | ⊤ | ⊥ | (φ ∧ ψ) | (φ ∨ ψ) | (φ→ ψ), ¬φ := (φ→ ⊥).

1. What should be the “truth object” of propositions?

2. How should the “truth object” of propositions interact with

connectives?
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Valuation

1. What should be the “truth object” of propositions?

JφK ∈ Sub(1) ∼= E(1,Ω),

Sub(1): poset of subobjects of 1, with A ≤ B if A ↪→ B

In E = PSh(C):

• 1 is the stage-wise terminal object, i.e. sending each C ∈ C to

singleton {∗} (with unique restriction).

• A subobject of 1 (a subterminal) is a subpresheaf P of 1 with each

section either {∗} or ∅ stable under restriction, meaning:

P(C ) = {∗} and α : D → C =⇒ P(D) = {∗}.
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Valuation

2. How should the “truth object” of propositions interact with

connectives? –What operations do we have on Sub(1)?

Proposition

In any topos (in particular in PSh(C) or Sh(C)), the poset Sub(1) forms

a Heyting algebra. Concretely, for subobjects A ↪→ 1 and B ↪→ 1:

• ⊤ := 1 ↪→ 1, ⊥ := 0 ↪→ 1.

• A ⊓ B := A× B ↪→ 1 (pullback / intersection).

• A ⊔ B := im
(
A⨿ B → 1

)
↪→ 1 (join / union).

• A ⇒ B is the largest subobject C ↪→ 1 such that C ⊓ A ≤ B, i.e. for

all D ↪→ 1,

D ≤ (A ⇒ B) ⇐⇒ (D ⊓ A) ≤ B.
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Valuation

Valuation

A valuation is a function

v : Var → Sub(1) :: p 7→ v(p) =: JpK ↪→ 1.

Then the valuation v can be extended to all formulas, i.e.

J−K : FormIPL → Sub(1), via the algebraic operations on Sub(1)

inductively. For example:

Jφ ∧ ψK = JφK ⊓ JψK, Jφ ∨ ψK = JφK ⊔ JψK,
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Presheaf semantics: stages and forcing

Consider a presheaf topos E = PSh(C) = SetsC
op

.

Forcing at an object C ∈ C
For a subterminal P ↪→ 1, define

C ⊩ P :⇐⇒ P(C ) = {∗}
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op

.

Forcing at an object C ∈ C
For a subterminal P ↪→ 1, define
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Since subterminals are stable under restriction, presheaf forcing is

persistent: if C ⊩ P and α : D → C then D ⊩ P.
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(A ⊔ B)(C ) = {∗} ⇐⇒ A(C )⨿ B(C ) ̸= ∅

⇐⇒ A(C ) = {∗} or B(C ) = {∗}
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Presheaf semantics: stages and forcing

Consider a presheaf topos E = PSh(C) = SetsC
op

.

Forcing at an object C ∈ C
For a subterminal P ↪→ 1, define

C ⊩ P :⇐⇒ P(C ) = {∗}

Now each proposition φ is interpreted to a subterminal JφK ↪→ 1.

Inductively, for φ,ψ:

C ⊩ Jφ→ ψK ⇐⇒ C ⊩ JφK ⇒ JψK

for Heyting implication in Sub(1).

(A ⇒ B)(C ) = {∗} ⇐⇒ ∀f : D → C ,
(
A(D) = {∗} ⇒ B(D) = {∗}

)
⇐⇒ ∀f : D → C ,

(
D ⊩ A ⇒ D ⊩ B

)
.
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Presheaf semantics: forcing clauses

For any presheaf topos E = PSh(C), C ∈ C, valuation v and formula φ,

define E ,C , v |= φ iff C ⊩ JφKv , we get the following semantics:

Presheaf semantics

E ,C , v |= ⊤ always, E ,C , v |= ⊥ never

E ,C , v |= p ⇐⇒ C ⊩ v(p) = JpKv , p ∈ Var

Inductively:

E ,C , v |= (φ ∧ ψ) iff (E ,C , v |= φ and E ,C , v |= ψ).

E ,C , v |= (φ ∨ ψ) iff (E ,C , v |= φ or E ,C , v |= ψ).

E ,C , v |= (φ→ ψ) iff ∀α : D → C ,
(
E ,D, v |= φ implies E ,D, v |= ψ

)
.

And negation is derived as:

C , v |= ¬φ iff ∀α : D → C , D, v ̸|= φ
36



Validity

For a presheaf topos E = PSh(C) = SetsC
op

: a formula φ is valid over E
(denoted by E |= φ) if for all valuations v , and for all C ∈ C, C , v |= φ.

For a class E of presheaf toposes: φ is valid over E if for all

E ∈ E , E |= φ.

Denote the collection of valid formulas on a topos by

Log(E) = {φ | E |= φ}

and similarly

Log(E ) = {φ | ∀E ∈ E , E |= φ}

Soundness

IPC ⊆ Log(PSh(C)) for any small category C.
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and similarly

Log(E ) = {φ | ∀E ∈ E , E |= φ}

Soundness

IPC ⊆ Log(PSh(C)) for any small category C.
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Example: Kripke semantics for IPC

Let F := (W ,R) be a Kripke frame for IPC, i.e. R is a partial order on

W . Think of F as a category with a unique arrow u → w iff wRu.

Consider E = PSh(F) = SetsF
op

.

Valuations as persistent sets of worlds

The map P ↪→ 1 7→ {w | P(w) = {∗}} is a bijection between

SubPSh(F)(1) and R-persistent subsets of W; under this bijection, JφKv
corresponds to the Kripke truth set of φ for the induced valuation V .
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Consider E = PSh(F) = SetsF
op

.

Valuations as persistent sets of worlds

The map P ↪→ 1 7→ {w | P(w) = {∗}} is a bijection between

SubPSh(F)(1) and R-persistent subsets of W; under this bijection, JφKv
corresponds to the Kripke truth set of φ for the induced valuation V .

A valuation v in E assigns each variable p a subobject v(p) ↪→ 1.

Stability under restriction implies the persistence of presheaf forcing, i.e.

v(p)(w) = {∗} and u → w =⇒ v(p)(u) = {∗}

Therefore, V (p) := {w ∈ W | v(p)(w) = {∗} } is a R-upset (a valuation

in a Kripke model for IPC).
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Example: Kripke semantics for IPC

Proposition

Let F = (W ,R) be a Kripke frame and E = PSh(F). Given a presheaf

valuation v : Var → SubE(1), let V be the induced Kripke valuation

V (p) := {w ∈ W | v(p)(w) = {∗} }.

Then for every formula φ ∈ IPL,

V (φ) = {w ∈ W | JφKv (w) = {∗} },

i.e. F ,V ,w |= φ iff JφKv (w) = {∗} iff E ,w , v |=PSh φ.
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Proposition

Let F = (W ,R) be a Kripke frame and E = PSh(F). Given a presheaf

valuation v : Var → SubE(1), let V be the induced Kripke valuation

V (p) := {w ∈ W | v(p)(w) = {∗} }.

Then for every formula φ ∈ IPL,

V (φ) = {w ∈ W | JφKv (w) = {∗} },

i.e. F ,V ,w |= φ iff JφKv (w) = {∗} iff E ,w , v |=PSh φ.

So presheaf semantics on poset presheaves is just Kripke semantics for

intuitinistic logic.
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Example: Kripke semantics for IPC

Proposition

Let F = (W ,R) be a Kripke frame and E = PSh(F). Given a presheaf

valuation v : Var → SubE(1), let V be the induced Kripke valuation

V (p) := {w ∈ W | v(p)(w) = {∗} }.

Then for every formula φ ∈ IPL,

V (φ) = {w ∈ W | JφKv (w) = {∗} },

i.e. F ,V ,w |= φ iff JφKv (w) = {∗} iff E ,w , v |=PSh φ.

Corollary

IPC = Log
(
{PSh(P) | P is a poset }

)
= Log

(
{PSh(C) | C is small }

)
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Sheaf semantics

For a sheaf topos Sh(C,Cov), idea is the same: evaluate variables into

Sub(1), compute composite formulas via algebraic operations in Sub(1).

But in sheaf topos:

• 1 remains the same (all stages agree with each other)

• P ∈ Sub(1) : C → {∅, {∗}} satisfying:

1. Stable under restriction

2. Sheaf condition: for any covering sieve S ∈ Cov(C), if(
∀α : D → C ∈ S , P(D) = {∗}

)
=⇒ P(C) = {∗}.

Because for subterminals: there is at most one amalgamation for a

matching family, i.e. {∗}. So the amalgamation condition reduces to

the existence of such an amagamation.

• Heyting operations on Sub(1)?

• Only ∨ changes
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Sheaf semantics: ∨ becomes local

In PSh(C):

C , v |= (φ ∨ ψ) iff (C , v |= φ or C , v |= ψ).

In Sh(C,Cov), local truth on covers implies global truth:

C , v |= (φ ∨ ψ) iff ∃(αi : Di → C )i∈I ∈ Cov(C )

s.t. ∀i , (Di , v |= φ or Di , v |= ψ)

Image generated by NotebookLM

In Sh(C,Cov) the join in Sub(1) is computed as the image of a

coproduct (involving colimits), but colimits in Sh(C,Cov) are obtained by

sheafifying presheaf colimits. Therefore ∨ becomes local (witnessed only

after passing to a cover).
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Sheaf on a space

Recall: For a topological space (X , T ), Sh(T ) denotes the sheaf on

(T ,⊆). A covering sieve in Cov(U) is exactly the ⊆-downward closure of

an open over of U.

Proposition

For any Sh(T ), there is a bijection Θ : Sub(1) ↣↠ T .

For each open U ∈ τ , define the subterminal sheaf 1U ↪→ 1 by

1U(V ) :=

{
{∗} if V ⊆ U,

∅ otherwise.

Conversely, for a subobject A ↪→ 1 in Sh(X ), let

UA :=
⋃

{V ∈ T | A(V ) = {∗} }.

U 7→ (1U ↪→ 1) and (A ↪→ 1) 7→ UA are mutually inverse.
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Sheaf on a space

The poset (T ,⊆) carries a Heyting structure (T ,X , ∅,∪,∩,⇒).

The Heyting implication U ⇒ V is given by the largest open set W such

that W ∩ U ⊆ V . Equivalently,

W ⊆ (U ⇒ V ) ⇐⇒ (W ∩ U) ⊆ V ,

so in particular

U ⇒ V = int
(
(X \ U) ∪ V

)
and negation is derived as

¬U := (U ⇒ ∅) = int(X \ U)

.

There’s more!

Θ is a Heyting isomorphism between (SubSh(T )(1),⊤,⊥,⊔,⊓,⇒) and

(T ,X ,∅,∪,∩,⇒).
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Topological semantics for IPC

Valuation

A valuation o assigns each propositional variable an open set:

o : Var → T :: p 7→ o(p) = JpKo

Extend inductively to all formulas, i.e. define J−K : FormIPL → T by

J⊤K = X , J⊥K = ∅, Jφ ∧ ψK = JφK ∩ JψK, Jφ ∨ ψK = JφK ∪ JψK,

Jφ→ ψK = int
(
(X \ JφK) ∪ JψK

)
, J¬φK = int

(
X \ JφK

)
.

For an open set U ∈ T ,

U, o |= φ iff U ⊆ JφK.

A formula φ is valid in (X , T ) iff JφK = X for every valuation.
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Sheaf semantics on spaces = topological semantics

Using the Heyting isomorphism SubE(1) ∼= T , every sheaf valuation v in

SubE(1) naturally corresponds to a topological valuation o in T .

Then for every φ ∈ IPL and every open stage U ∈ T ,

U, o |=tp φ⇐⇒ U ⊆ JφKo ⇐⇒ E ,U, v |=Sh φ.

For the inductive step for ∨, we make use of the local feature of covers.

For any A,B ∈ T , U ⊆ A ∪ B iff:

there is an open cover (Ui )i∈I of U s.t. ∀i ∈ I : Ui ⊆ A or Ui ⊆ B

which matches the sheaf semantic clause for ∨.

In particular, taking U = X , for each valuation o (equivalently the

induced v), we have JφKo = X ⇐⇒ JφKv (X ) = {∗}; hence (X , T ) |= φ

iff Sh(T ) |= φ.
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Sheaf semantics on spaces = topological semantics

Theorem (Tarski)

IPC = Log
(
{Sh(X , T ) | (X , T ) is a topological space }

)
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Kripke–Joyal semantics

In any (elementary) topos E , the truth values SubE(1) form a Heyting

algebra, so the internal propositional logic of E is intuitionistic.

• classical only when SubE(1) is Boolean(¬¬ = id), e.g. when the

Grothendieck topology is the dense/double-negation topology,

defined by

Cov(C ) = {R ∈ Ω(C ) : (∀f : C ′ → C ) (∃g : C ′′ → C ′) (fg ∈ R)}
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Kripke-Joyal semantics

More generally, every elementary topos E carries an internal first-order

intuitionistic logic with logical connectives/quantifiers interpreted by the

corresponding categorical constructions (pullbacks, images, exponentials,

adjoints). Kripke–Joyal semantics is the standard “external” forcing

presentation that lets us read off this internal logic stagewise.

Set structure:

• Domain: a set M

• Relation symbol: subset

• Assignment: elements x⃗ 7→ a⃗

• Formula: “derived” subset

Jφ(x)K ⊆ M

Jφ(x)K 1

1 M {0, 1}

true

f χJφ(x)K

Topos structure:

• Domain: an object X

• Relation symbol: subobject

• Assignment: generalized

elements

• Formula φ: “derived”

subobjects

Jφ(x)K 1

U X Ω

true

f χφ 48



Questions?

30
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