

TOPOLOGY IN AND VIA LOGIC 2026

TUTORIAL 2

COMPACTNESS

Definition 1. Let X be a set, and $S \subseteq \mathcal{P}(X)$ closed under intersection, union, complement, and contains \emptyset ; we say that S is a Boolean algebra. We say that $F \subseteq S$ is an S -filter if:

- (1) $X \in F$;
- (2) If $U \in F$ and $U \subseteq V$ where $V \in S$, then $V \in F$;
- (3) If $U, V \in F$ then $U \cap V \in F$.

Furthermore, we call F a prime S -filter if for each $U \in S$, either $U \in F$ or $X - U \in F$.

Note: Below you can use the fact that the Prime Filter Theorem, which we saw in class, holds for any Boolean algebra in the above condition.

Exercise 1. Let X be a topological space. Observe that

$$\text{Clop}(X) = \{U \subseteq X : U \text{ is clopen}\}$$

is closed under intersection, union, complement, and contains \emptyset . Thus, we can consider the collection of $\text{Clop}(X)$ -prime filters, denoted by $X^* = \text{Spec}(\text{Clop}(X))$. We give this space a topology by specifying the following basis (you may assume without proof that this, indeed, is a basis for a topology on X^*):

$$\{\varphi(U) : U \in \text{Clop}(X)\} \text{ where } \varphi(U) = \{F \in X^* : U \in F\}.$$

- (1) Show that X^* is always a compact Hausdorff space. Hint: For compactness, given $X^* = \bigcup_{i \in I} \varphi(U_i)$, it might be helpful to consider

$$\{U \in \text{Clop}(X) \mid U \supseteq U_{i_0}^c \cap \dots \cap U_{i_n}^c \text{ for some } \{i_0, \dots, i_n\} \subseteq I\}.$$

- (2) Show that the map $i : X \rightarrow X^*$ given by

$$i(x) := \{U \in \text{Clop}(X) : x \in U\}$$

is well-defined.

Definition 2. Let X be a normal topological space. We say that X is strongly zero-dimensional if whenever A, B are disjoint closed sets, then there is some clopen set U such that $A \subseteq U$ and $B \subseteq X - U$.

Exercise 2. Let X be a topological space and X^* be defined as in Exercise 1.

(3) Assume that X is a strongly zero-dimensional space, and suppose that Z is some compact Hausdorff space, such that $f : X \rightarrow Z$ is a continuous function. Show that for $F \in X^*$ the map

$$\tilde{f}(F) := x_F, \text{ where } x_F \in \bigcap \{\overline{f[U]} : U \in F\}.$$

is a well-defined continuous map from X to Z , and has the property that $\tilde{f} \circ i = f$. (Hint: you can use the following fact without proof: for all distinct $u, v \in Z$, there exists open sets $U \in N(u)$ and $V \in N(v)$ such that $cl(U) \cap cl(V) = \emptyset$.)

(4) Conclude that for strongly zero-dimensional spaces we have that $X^* \cong \beta(X)$.

TOPOLOGICAL SEMANTICS OF MODAL LOGIC

McKinsey and Tarski [1] proposed interpretations of the unary modal operator \diamond as the closure operator cl and the derived set operator d of a topological space. These interpretations give the topological C-semantics and d-semantics for modal logic.

In this section, we take a closer look at the topological C-semantics of modal logic.

Definition 3. A topological model is a triple $\mathfrak{M} = (X, \tau, \nu)$ where (X, τ) is a topological space and $\nu : Var \rightarrow \mathcal{P}(X)$ a function called a valuation for X .

A valuation ν is extended to the set Fm of all modal formulas by the following rules:

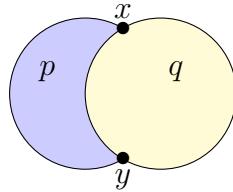
$$\nu(\perp) = \emptyset, \nu(\varphi \rightarrow \psi) = (X \setminus \nu(\varphi)) \cup \nu(\psi) \text{ and } \nu(\diamond \varphi) = cl(\nu(\varphi)).$$

A formula φ is true at x in \mathfrak{M} , notation $\mathfrak{M}, x \models \varphi$, if $x \in \nu(\varphi)$. Note that by definition of the operator $cl : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$, the following statements hold:

- (a) $\mathfrak{M}, x \models \square \varphi$ if and only if there is $U \in N(x)$ such that $\mathfrak{M}, y \models \varphi$ for all $y \in U$;
- (b) $\mathfrak{M}, x \models \diamond \varphi$ if and only if for all $U \in N(x)$, there is $y \in U$ such that $\mathfrak{M}, y \models \varphi$.

Exercise 3. Show that (a) and (b) in Definition 3 hold.

Exercise 4. Consider the following topological model, where p is true in the blue area and its border line, and q is true in the yellow area and its border line.



- (1) Draw the region defined by the modal formula $\diamond p \vee \square q$.
- (2) Find modal formulas that define the set $\{x, y\}$.

Recall that modal logic S4 is defined to be $K \oplus \{\diamond \diamond p \rightarrow \diamond p, p \rightarrow \diamond p\}$.

Exercise 5. Prove that every theorem of S4 is valid. That is, given any $\varphi \in \mathbf{S4}$, $\mathfrak{M}, x \models \varphi$ for all topological model $\mathfrak{M} = (X, \tau, \nu)$ and $x \in X$.

In fact, the converse of Exercise 5 also holds. Thus we have

Theorem 4. S4 is the modal logic of all topological spaces.

MORE ON TOPOLOGICAL SEMANTICS: D-SEMANTICS

There are more than one semantics of modal logic based on topological spaces. The one we have seen in class is also called C-semantics. We now introduce the d-semantics as follows:

Definition 5. Let $\mathcal{X} = (X, \tau)$ be a topological space and $x \in X$. A subset $Y \subseteq X$ is an open neighborhood of x if $x \in Y \in \tau$. Let $N(x)$ be the set of all open neighborhoods of x . For every subset $A \subseteq X$, let $\mathbf{d}(A)$ be the derived set of A , i.e.,

$$\mathbf{d}(A) = \{x \in X : \forall U \in N(x) (U \cap (A \setminus \{x\}) \neq \emptyset)\}.$$

A topological model is a triple $\mathcal{M} = (X, \tau, \nu)$ where $\mathcal{X} = (X, \tau)$ is a topological space and $\nu : \mathbf{Prop} \rightarrow \mathcal{P}(X)$ is a function which is called a valuation in \mathcal{X} . A valuation ν is extended to all modal formulas \mathcal{L} as follows:

$$\nu(\neg\varphi) = X \setminus \nu(\varphi), \nu(\varphi \vee \psi) = \nu(\varphi) \cup \nu(\psi) \text{ and } \nu(\Diamond\varphi) = \mathbf{d}(\nu(\varphi)).$$

For each formula φ , φ is d-true at w in \mathcal{M} (notation: $\mathcal{M}, w \models_d \varphi$) if $w \in \nu(\varphi)$. We say that φ is d-valid if $\mathcal{M}, w \models_d \varphi$ for all topological model \mathcal{M} and point w in \mathcal{M} .

Exercise 6. Try to understand the d-semantics given above and show:

- (1) $\Diamond\Diamond p \rightarrow \Diamond p$ is not d-valid.
- (2) $\Diamond\Diamond p \rightarrow \Diamond p \vee p$ is d-valid.

REFERENCES

[1] McKinsey J. C. C., Tarski A., The algebra of topology, Annals of Mathematics **45**, 141–191 (1944)