
TOPOLOGY IN AND VIA LOGIC 2026
TUTORIAL 1

Basic Set Theory

Exercise 1. The following results are used often in topology: Let X, Y be sets, f : X → Y
a function, S ⊆ X, {Si : i ∈ I} ⊆ P(X), T ⊆ Y and {Tj : j ∈ J} ⊆ P(Y ). Then

(1) f [
⋃

i∈I Si] =
⋃

i∈I f [Si].

(2) f [
⋂

i∈I Si] ⊆
⋂

i∈I f [Si].

(3) f−1[
⋃

j∈J Tj] =
⋃

j∈J f
−1[Tj].

(4) f−1[
⋂

j∈J Tj] =
⋂

j∈J f
−1[Tj].

(5) f [S] ∩ T = f [S ∩ f−1[T ]].

Furthermore, if f [
⋂

i∈I Si] =
⋂

i∈I f [Si] if f is injective. Prove them.

Basic Topology

Exercise 2. Recall that the Euclidean topology τEuc on R is defined as follows:

for all U ⊆ R, U ∈ τEuc if and only if ∀z ∈ U∃x, y ∈ U(z ∈ (x, y) ⊆ U).

Verify that (R, τEuc) is a topological space.

Exercise 3. Recall that the Cantor set is defined to be the set 2ω of all binary sequences
of length ω. Let 2<ω denote the set of all finite binary sequences. For all s ∈ 2<ω and
t ∈ 2ω ∪ 2<ω, we write s ◁ t if t↾dom(s) = s. Intuitively, s ◁ t means that s is an initial
subsequence of t. For each s ∈ 2<ω, we define the set C(s) by

C(s) = {t ∈ 2ω : s ◁ t}.
Let B = {C(s) : s ∈ 2<ω}. Verify that there is a unique topology τCan on the Cantor set for
which B is a basis.

The topological space (2ω, τCan) is called the Cantor space.

Exercise 4. Let X, Y be topological spaces.

(1) Show that the product topology is the coarsest topology on the set X × Y such that
the projections πX : X × Y → X and πY : X × Y → Y are continuous.

(2) Show that for any other topological space Z, if there exist continuous functions f1 :
Z → X and f2 : Z → Y , then there exists a unique continuous function f1 × f2 :

1



2 TOPOLOGY IN AND VIA LOGIC 2026 TUTORIAL 1

Z → X × Y making the following diagram commute

Z

X × Y

X Y

πX πY

f1 f2

f1×f2

(3) Show that this defines the product topology up to homeomorphism: whenever a topolog-
ical space A together with two continuous functions πA,X : A → X and πA,Y : A → Y
satisfy the condition in (2), then there exists a homeomorphism between A and X×Y .
Hint: Given topological spaces X, Y , a continuous map f : X → Y is a homeomor-
phism if and only if there is a continuous map g : Y → X such that fg = idY and
gf = idX .

Closure, Interior and Neighbourhoods

Definition 1. Let (X, τ) be a topological space. We say that a set U ∈ P(X) is closed if its
complement is open, i.e., if (X \ U) ∈ τ .

Exercise 5. Let (X, τ) be a topological space and S ⊆ X. Show that the following hold:

(1) There exists an open set int(S) such that (i) int(S) ⊆ S; and (ii) for all open set U ,
U ⊆ S implies U ⊆ int(S).

(2) There exists an closed set cl(S) such that (i) S ⊆ cl(S); and (ii) for all closed set U ,
S ⊆ U implies cl(S) ⊆ U .

Definition 2. The sets int(S) and cl(S) in Exercise 5 are called the interior and the closure
of S, respectively. Moreover, we see that a set S is closed if S = cl(S), and open if S =
int(S). The operators

int : P(X) → P(X), S 7→ int(S)

and

cl : P(X) → P(X), S 7→ cl(S)

are called the topological interior and topological closure, respectively.

Exercise 6. Let (X, τ) be a topological space and A,B ⊆ X. Prove the following statements:

(1) A ⊆ cl(A) and int(A) ⊆ A.

(2) cl(cl(A)) = cl(A) and int(int(A)) = int(A).

(3) cl(A) = X \ (int(X \ A)) and int(A) = X \ (cl(X \ A)).
(4) cl(A) ∪ cl(B) = cl(A ∪B) and int(A) ∩ int(B) = int(A ∩B).

(5) If A ⊆ B, then cl(A) ⊆ cl(B) and int(A) ⊆ int(B).
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Is cl(A) ∩ cl(B) = cl(A ∩ B) or int(A) ∪ int(B) = int(A ∪ B) true in general? Prove your
answer.

Definition 3. Given a topological space (X, τ) and a point x ∈ X, we say that V ∈ P(X)
is a neighbourhood of x if there is an open set U such that x ∈ U ⊆ V .

Moreover, observe that if a neighbourhood V of a point x is open, the definition simplifies:
V is an open neighbourhood of a point x if and only if x ∈ V and V is open.1

Let N(x) denote the set of all open neighbourhoods of x, i.e., N(x) = {U ∈ τ : x ∈ U}.

Exercise 7. Suppose (X, τ) is a topological space and S ⊆ X. Then for all x ∈ X, the
following are equivalent:

• x is in the closure of S, i.e., x ∈ cl(S).

• All open neighbourhoods U of x have non-empty intersection with S, i.e.,

∀U ∈ N(x)(U ∩ S ̸= ∅).

There is a proof of this proposition in the note, but try to prove it yourself first :)

Continuous maps

Exercise 8. Complete the proof of Proposition 3.1.2 in the notes. That is, prove that the
following are equivalent for a map f : X → Y between topological spaces:

(1) f is continuous,

(2) For every closed set U in Y , its preimage f−1[U ] is closed in X,

(3) For every x ∈ X, whenever V ⊆ Y is an open neighbourhood of f(x), there is an
open neighbourhood U ⊆ X of x such that f [U ] ⊆ V .

Exercise 9. Prove that for any real numbers a and b such that a < b, the interval (a, b) is
homeomorphic to the real line R. Hint: First try to prove it for (−1, 1).

Remark 4. You now have sufficient topological knowledge to understand the jokes made
about topologists: doughnuts and coffee mugs. Topology is the study of spaces up to home-
omorphism, which means that spaces that can be obtained by this sort of “stretching”
behaviour are homeomorphic. But what out! There can be very wild homeomorphisms
between spaces.

1In the literature, you will sometimes find that a neighbourhood is already required to be open. We do
not adopt that convention, but speak of ‘open neighbourhoods’ when needed.


