Presentation Topics

Topology in and via Logic 2026

Below you will find a number of topic presentation ideas. These are organized by section,
containing a brief outline of what the general theme is and some ideas of how to structure your
presentation. You are also welcome (and encouraged) to explore your own topics based on your

interests.

General Topological Questions

Whilst this course has covered many topics you will see in an introductory course in topology,
even in the domain of general topology, some natural concepts were left out. Hence, it might be

interesting to deepen these concepts.

¢ Keeping you Close: Metric Spaces: One of the key aspects of the real line is that you
can keep track of the distance between two points on a space. Indeed, for products of the
real line, the same holds. This is basically down to metric spaces. Introduce the notion of a
metric space and show that all metric spaces are topological spaces. Discuss basic properties
of metric spaces: topology, sequences in metric spaces, and sequential continuity. Introduce
the notion of a complete metric space, and define the completion of a metric space. In case
you have time, you can look into the question of when a topological space is a metric space:
give an example of a topological space that is not metrizable, and use Urysohn’s Lemma to
prove his metrization theorem, or go even further by characterizing the class of metrizable
topological spaces via the Nagata-Smirnov Metrization Theorem or the Smirnov Metrization

Theorem.

¢ Keeping you Close: Uniformities: Sometimes the notion of a metric can be too strong
for some applications. A weaker notion might be needed, which nevertheless still captures the
idea that two points are “close” in a strong, but qualitative, rather than quantitative sense.
Define uniform spaces. Relate uniform spaces to metric and topological spaces. Then choose
one: introduce uniform completions and Cauchy filters; or show that a topology is Tychonoff

if and only if it can be given a uniform structure.

¢ Keeping you Close: Order Topologies: We have seen that when defining the standard

(Euclidean) topology on R, all we need to consider is its order: we generate the topology via



the basis consisting of all open intervals. This idea generalizes most naturally to constructing
a topology on any given linear order, called its order topology, which allows for generalizing
various theorems from analysis. Introduce the notion of an order topology and show how
these topologies interact with other basic notions we have seen. For instance, you can show

(some of) the following:

(i) for convex subsets, restricting the order topology is the same as taking the subspace
topology;

(ii) all order topologies are Hausdorff (and even normal);

(iii) all convex subsets of dense linear orders with the Least Upper Bound Property (lL.u.b.

property) are connected;
(iv) all connected sets in the order topology are dense and have the l.u.b. property;

(v) if X,Y are order topologies and f : X — Y is order-preserving and surjective, then f is

a homeomorphism

(vi) all order topologies are regular.

Then prove (1) a generalized topological intermediate value theorem and (2) a generalized
topological extreme value theorem, and show how the usual Intermediate Value Theorem and

Extreme Value Theorem on R obtain as special cases.

Projecting on Compact Hausdorff: We have seen that the compact Hausdorff spaces are
very nice structures. Investigate (two out of the three) further properties of these objects:
given two compact Hausdorff spaces X,Y, there is a topology that can be put on XY, called
the compact-open topology; a space is called compactly generated if it is coherent with the
family of its compact subspaces - show they are all topological sums of compact Hausdorff
spaces; show that if P is a compact Hausdorff and extremely disconnected space, f : P — X
is a continuous map, and e : E — X is a surjective continuous map, then there exists a map
f:P — E such that foe=f.

Topology and Logic

We started this course by discussing an epistemic interpretation of topology, and later found that a

very natural modal logic implements precisely the idea of being an interior operator, an equivalent

way of defining topologies. How far does the logical description of topology go?

e McKinsey and Tarski theorem for C-semantics: McKinsey and Tarski proposed the

interpretation of the unary modal operator & as the closure operator cl of a topological space.



These interpretations give the topological C-semantics for modal logic. C-semantics is closely
related to the closure algebras. It is a landmark theorem of McKinsey and Tarski that S4
is the C-logic of any dense-in-itself metrizable space. The original McKinsey-Tarski result
had an additional assumption that the space is separable. Rasiowa and Sikorski showed that
this additional condition can actually be dropped, assuming AC. Give the definition of C-
semantics, discuss the relation between topological spaces and closure algebra, and give a

proof of McKinsey and Tarski’s theorem.

Abashidze-Blass theorem for d-semantics: If we interpret the modality & as the derived
set operator d, then we obtain the d-semantics for modal logic. Esakia showed that wK4 is
the d-logic of all topological spaces. Moreover, Abashidze and Blass independently proved
that GL = Log,(«) for any ordinal « greater than w“. Give the definition of d-semantics,
discuss some of its properties (for example, compare the expressive power of C-semantics and

d-semantics), and give a proof of the Abashidze-Blass theorem.

Polyhedral modal logic: It was shown that the set Sub(P) of subpolyhedra of a polyhedron
P forms a Boolean algebra closed under interior and closure. Polyhedral semantics is a way of
interpreting modal formulas on polyhedra. This semantics was introduced by Bezhanishvili
et al. recently. Give definitions of Polyhedral semantics and polyhedrally complete logics.
Prove (some of) the followings: (i) Every poly-complete logic has the finite model property;
(ii) The logics S4.Grz.2 and Grz.3 are poly-incomplete.

Topological products of modal logics: In general, the product of two modal logics is
the logic of the class of all products of structures of the corresponding logics. The study of
products of Kripke frames and their modal logics was initiated by Segerberg and Shehtman.
In 2006, van Benthem et al. introduced topological products of modal logics. The topological
product of modal logics L; and Ly containing S4 is defined semantically as the modal logic of
the class of all possible products of topological spaces of corresponding logics. It was shown
that the topological product S4 x; S4 is the same as the fusion S4 @ S4. Define products
and topological products of modal logics, discuss the relation between these two different
products, and prove: (i) the complete logic of all topological products of topological spaces
is weaker than S4 x S4; and (ii) S4 x; S4 = S4 @ S4.

Modal logic of betweenness: Let’s now move on from topology to more ‘rigid’ spatial
structures. For instance, consider affine geometry, where the major notion is a ternary notion
of betweenness f(xyz) between points. This says that point y lies between x and z, allowing

y to be one of these endpoints. Now define a binary betweenness modality < B >:
M,z =< B > (¢,) if and only if 3y, z(B(yxz) AM,y =@ A M,z = ).
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This leads to very concrete spatial pictures, where modal logic plays its role again. A modal
logic of betweenness was studied by van Benthem and Bezhanishvili. Give definitions of affine
geometry and the modal logic of betweenness. Discuss affine bisimulation and the expressive

power of this logic. Give some examples.

e Hyperspaces and Beyond: A classic result by Leo Esakia constructed a form of “topo-
logical Kripke frames” by considering topologies on the power set of a topological space -
so-called “hyperspaces”. Give an outline of the Vietoris topology on a general space, and its
consequence for Stone spaces: the Vietoris construction maps Stone spaces to Stone spaces.
Show that there is a 1-1 correspondence between specific maps to the Vietoris space and

descriptive general frames.

e Shower of Semantics: It seems clear that S4 is the modal logic of all topological spaces,
and also the modal logic of the real line. However, there are more modal logics associated
with space. Discuss (some of) the following: the d-semantics of modal logic; intuitionistic

logic as a logic of space; provability logic and scattered spaces, amongst others.

Set Theoretic Topology

What we have covered in this project is very much the core theory of general topology, but there
was a set of topics which, for matters of space, were left out - the cardinality invariants, and other

analyses of space which depend on the existence of specific combinatorial structures.

e Weighing the Character of a Space: On par with the separation axioms, we have axioms
controlling the size of a space, and cardinal invariants corresponding to them. Introduce the
notion of “weight,” “density,” and “character” of a topological space. Define first-countable,
separable, and second-countable spaces; give examples and counterexamples for these notions.

Define the class of regular spaces. Then prove Urysohn’s embedding theorem.

e Suslin’s Real Problem: Axiomatizing the reals has been a challenge throughout the history
of mathematics, and many attempts were made to make precise what is special about them.
The intimate connection of the reals with linear orders allows one to ask questions about this.
Define a linearly ordered topological space. Provide a proof of the classical result showing
that a linear order is complete, separable, dense, and unbounded if and only if it is the real
line. Introduce Suslin’s problem. Introduce Martin’s Axiom, and show that it resolves Suslin’s

problem positively.

e Bor(r)eling in the Real Line: When working with topological spaces, not all sets are open

or closed. However, some sets can still be obtained by, in some sense “accessible operations”.
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Describe the concept of a Borel set and the corresponding Borel algebra. Introduce the
notion of a Polish space as a natural setting to discuss Borel sets. Then prove that the Borel

hierarchy does not collapse. If interested, discuss the connections with computability theory.

e The Mysteries of Sw: The space fw, and the remainder Sw — w constitute a very complex
structure, described as a “beast with three heads”. Discuss p-points and their independence,
to illustrate this. If interested, you can relate these filters to Ramsey-like theorems, where they
appear naturally. Then provide (Engelking’s topological) proofs of Parovicenko’s theorems
(without all details): in the presence of C'H, the space fw — w is the unique space with the

following properties:

(i) Compact Hausdorff, which is crowded;
(ii) Has weight equal to the cardinality of the continuum;
(iii) Every two disjoint countable unions of closed sets have disjoint closures;
)

(iv) Every non-empty countable intersection of open sets has non-empty interior.

And in fact, this characterization is equivalent to C'H.

Algebraic Topology

One aspect that is somewhat unsatisfactory about the notion of continuity is that, whilst it captures
the idea that transformations are in some sense unbroken, this intuition is not truly captured by
continuity. The most intuitive idea of continuity - of a continuous “deformation” of space, of a
folding of space - can only be captured by other, more sophisticated concepts. These happen to

almost always involve some algebra.

e It is simple[x]|: Simplicial complexes constitute one of the simplest, yet most versatile
classes of spaces available in mathematics, and they are used in everything, from modal logic
to category theory to algebraic topology and set theory. Give the definition of a simplicial
complex, and the basic properties of these spaces. Then define the basic idea of a chain group,
boundaries, and cycles, and show how this implements the idea of “higher-dimensional holes”.

Give many examples.

e Deforming Space: Homotopies are the right notion of continuous deformation of space.
They can be given the structure of a group, which leads to the powerful methods of algebra.
Introduce the notion of a homotopy, and give examples. Define the fundamental group. Define
a covering map, and prove that Z is the fundamental group of the circle. If there is time, give

a proof of the Borsuk-Ulam Theorem for n = 2.



Categorical Topology

Our whole emphasis in this course has been highly categorical. We have made use of an analogy -
topology as a space of learning, or computability, which is strongly preferred by category theorists
and computer scientists alike. However, we have strived to keep the presentation close to a clas-
sical presentation, mostly through a strong concern with point-set notions. What happens if you

relinquish that?

e If there was no point: Topology was defined by open sets of points. What if we take them
as the primitive structure? Building on ideas going back to Stone duality, this “point-free”
perspective replaces spaces by algebraic structures, and it gained wider attention through
Johnstone’s essay The point of pointless topology. Introduce frames and locales and describe
how they capture topology, with examples and a comparison to the classical point-set ap-
proach. Discuss how to recover points and spaces from point-free topology and prove the

equivalence of spatial locales and sober spaces.

e Topping Topoi: Topoi constitute a wide range of structures with wide applications. But
even their definition can sometimes elicit fear in the hearts of people. Define a sheaf over
topological spaces, and illustrate, with examples of sheaves of continuous functions, that these
are natural structures. Then define a (localic) Grothendieck topos as this kind of structure.

Give a brief sketch of the sheafification procedure.

Philosophy and Topology

In our approach, we emphasized the intuitions of epistemology to motivate our work. Many of these
intuitions can be made more thoroughly connected through some formalization of this in the form
of topological epistemic logic. But this does not exhaust the connections between philosophy and
topology. Mereology has emerged in the 21st century as a source of metaphysical questions and as
a deeply sophisticated formal theory, often rich in mathematical subtlety alongside its philosophical
interest. In this setting, theories of location have given rise to specific approaches that share with

topology an interest in space, occupying space, amongst other spatial questions.

e Topology of surprise: Epistemic logic has been formalized by Hintikka within the frame-
work of possible-world semantics in relational models. Bezhanishvili et.al. presented a topo-
logical epistemic logic, with modalities for knowledge (modeled as the universal modality),
knowability (represented by the topological interior operator), and unknowability of the actual

world. Two versions of surprises were studied there. Discuss the epistemic interpretation of



topology and the formalizations of surprise by N. Bezhanishvili et. al., provide some examples,

and show some possible applications.

Misleading Defeaters and Defeating Misleaders: Some recent work has connected
epistemic logic and classic discussions about knowledge, justified belief, defeasibility, and
misleadingness. Present the basic arguments of the paper by Baltag, Bezhanishvili, Ozgun,
and Smets, and present the proposals of some topological models. Then analyse the logic.
You should pick one particular epistemic concept - evidence, justified belief, knowledge - to

focus on.

Space is a Soup: Region-based theories of spatial structure are formalizations of space that
depend on the notion of a “region” rather than points. These are often “thick” structures,
and quite distinct from point-set topological spaces. Discuss the formalization by Casati and

Varzi, providing examples and applications to the philosophy of your interest.



