

Topology in and via Logic Kick-Off Meeting

Tenyo Takahashi, Nick Bezhanishvili
January 5, 2025

Introduction

What is topology?

- ▶ An abstract mathematical study of **shape** and **space**.

Why topology?

- ▶ Applications in various areas of logic: algebraic logic, model theory, set theory, domain theory, formal epistemology, etc.
- ▶ Connection to MoL-courses, such as [Mathematical Structures in Logic](#), [Model Theory](#), and [Topology, Logic and Learning](#).

Organization

Everything is (will be) available on the project website:

- ▶ <https://tt0811.github.io/Tenyo/Topology2026.html>

The first and second week:

- ▶ 6 lecture recordings from 2024 with slides provided
- ▶ 2 tutorials: on **Friday** (Jan 9 and 16) from **11:00** to **13:00** in **F3.20**
- ▶ 2 homework assignments: published on **Jan 5 and 12**, due on **Jan 15 and 22**
 - ▶ Completed in teams of up to 2 people (only one needs to submit via email)

The third week:

- ▶ 2 Q&A sessions: time TBA (Jan 19 and 23?)

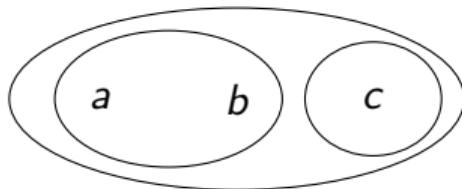
The fourth week:

- ▶ Group presentations: given by teams (typically 2-3 persons per team)
 - ▶ With a guest lecture by Nick

A very naive introduction to topology

- ▶ Topology is a mathematical study of **spaces**.
- ▶ A space is a **collection of points** with **shape**.
- ▶ Mathematically, a **topological space** is a pair (X, τ) , where X is a **set** and τ is a **topology** on X ; X defines the collection of points and τ defines the shape.
- ▶ A topology on X is a collection of **subsets** of X .
- ▶ Let us take a look at the **geometric intuition** behind this definition.
(See lecture notes and recordings for a mathematically proper introduction.)

A very naive introduction to topology


- ▶ Given a set X , what characterizes a shape of X ?
- ▶ A naive answer: **distance between points**. (cf. metrix spaces.)
- ▶ More fundamentally, it is the **farness** and **nearness** between points.

A very naive introduction to topology

- ▶ Given a point x in the plane \mathbb{R}^2 , what is the closest point to x ?
- ▶ It is x itself.
- ▶ Why is x the closest point to x ? (Try **not** to use distance.)
- ▶ Because, for any point $y \neq x$, there is a **subset** $U \subseteq \mathbb{R}^2$ such that $x \in U$ and $y \notin U$. It is not possible to separate x from x itself in this way.

A very naive introduction to topology

- ▶ We may say that **the way X can be divided** determines the farness and nearness between points, and thus the shape.
- ▶ This is represented by selecting a **collection of subsets of X** , namely, a **topology**.
- ▶ Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}\}$.

- ▶ a and b are close because there is no set in τ separating them.
- ▶ a and c are distant because they are separable by sets in τ .

A very naive introduction to topology

- ▶ Finally, let us see two extreme examples. Let X be a set.
- ▶ Consider $\tau = \{\emptyset, X\}$.
 - ▶ In this topology, all points are close to each other.
 - ▶ That is why such τ is called the **indiscrete** topology or the **trivial** topology.
- ▶ Consider $\tau = \mathcal{P}(X)$, the power set of X .
 - ▶ In this topology, all points are far from each other.
 - ▶ That is why such τ is called the **discrete** topology.

Topology in and via Logic Kick-Off Meeting

Thank you!
See you all on Friday!