

TOPOLOGY IN AND VIA LOGIC 2026

HOMEWORK ASSIGNMENT 2

- Deadline: January 22 at 23:59.
- All exercises are worth the same points.
- The assignment can be completed in teams of up to two people.
- Good luck!

SEPARATION

Exercise 1. Let X be a T_1 -space.

- (1) Show that if X is finite, then the topology on it is discrete.
- (2) Show that for each $x \in X$, $\{x\}$ is closed.
- (3) Show that for each $x \in X$, the filter

$$F(x) := \{S \subseteq X : x \in S\}$$

converges uniquely to x .

- (4) Show that the property in (3) is an alternative definition for T_1 -spaces.

COMPACTNESS

Exercise 2. Give an example of a compact space that is not Hausdorff. *Hint: Consider the Alexandroff topology on linear orders.*

Exercise 3. Let X be a compact Hausdorff space, and A a closed subspace. Define the equivalence relation $x \sim y$ if and only if either $x = y$ or x and y are both in A . Show that the quotient space X/\sim is compact Hausdorff.

CONNECTEDNESS

Exercise 4. Let X and Y be topological spaces.

- (1) Assume that $f : X \rightarrow Y$ is a homeomorphism. Show that if X is connected, then so is Y .
- (2) Show that if X and Y are connected, then so is $X \times Y$.