

TOPOLOGY IN AND VIA LOGIC 2026

HOMEWORK ASSIGNMENT 1

- Deadline: January 15 at 23:59.
- All exercises are worth the same points.
- The assignment can be completed in teams of up to two people.
- Good luck!

TOPOLOGICAL SPACES

Exercise 1. Consider the space (\mathbb{R}, τ_{Euc}) , with its Euclidean topology.

- (1) Give an example of a set which is neither open nor closed.
- (2) Show that the open intervals of the form (x, y) where $x, y \in \mathbb{Q}$ form a basis for this topology.
- (3) Show that \mathbb{Q} is a countable union of closed sets.

Exercise 2. Let X be a set. We say that an operation $\square : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ is called an *interior operator* if it satisfies for each $U, V \in \mathcal{P}(X)$,

- (All set): $\square X = X$;
- (Normality): $\square(U \cap V) = \square U \cap \square V$;
- (Inflationarity): $\square U \subseteq U$;
- (Idempotence): $\square U \subseteq \square \square U$.

- (1) Show that if (X, τ) is a topological space, the topological interior *int* is an interior operator in this sense.
- (2) Given a set (X, \square) equipped with an interior operator, define a topology for which \square is the topological interior operator.
- (3) We say that an interior operator \square is *completely multiplicative* if for each $(U_i)_{i \in I}$ we have that:

$$\square\left(\bigcap_{i \in I} U_i\right) = \bigcap_{i \in I} \square U_i$$

Show that Alexandroff topologies are in 1-1 correspondence with completely multiplicative interior operators.

- (4) Let (X, \square) be a set, equipped with a completely multiplicative interior operator, with the following property: if $x \neq y$, then there is some $U \subseteq X$ such that either $x \in \square U$ and $y \notin \square U$ or $y \in \square U$ and $x \notin \square U$. Show that then there is a poset (P, \leq) such that the Alexandroff topology on P is the same as the topology induced on X by the interior operator.

Exercise 3. Let (X, τ) be a topological space. We say that a map $\nu : \tau \rightarrow \tau$ is a *nucleus* if it satisfies the following for all open subsets $U \subseteq X$:

- (i) $U \subseteq \nu(U)$;
- (ii) If $U \subseteq V$ then $\nu(U) \subseteq \nu(V)$;
- (iii) $\nu(\nu(U)) = \nu(U)$;
- (iv) $\nu(U \cap V) = \nu(U) \cap \nu(V)$.

(1) Show that if $K \subseteq X$ is any subset, then the map $\nu_K : \tau \rightarrow \tau$ given by setting

$$\nu_K(U) = \text{int}([X - K] \cup U)$$

for all opens U , is a nucleus, called the *induced nucleus of K* .

(2) (*) Note that the map:

$$j_{\neg\neg}(U) = \text{int}(\text{cl}(U))$$

is a nucleus as well. Show that there is a topological space (X, τ) such that $j_{\neg\neg}$ on this space is not the induced nucleus of any set $K \subseteq X$. Hint: Consider the real line and show that the only K which could induce such a nucleus is the empty set, and that the empty set does not induce it.

CONTINUOUS MAPS

Exercise 4. Show the following:

- (1) Given an example of a bijective continuous map which is not a homeomorphism.
- (2) Show that all functions from a discrete space to another space are continuous. If (X, τ) is a space with the *indiscrete* topology, which functions from this space to some other space are continuous?
- (3) Show that if $f : X \rightarrow Y$ is a bijective continuous map between topological spaces, then the following are equivalent:
 - f^{-1} is continuous;
 - f is closed;
 - f is a homeomorphism.