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Spatial logic

@ In spatial logic a central role is played by the topological
semantics of intuitionistic and modal logics.

o I will discuss a variant of this semantics that connects
modal logic with polyhedral geometry.

@ We call this new topic polyhedral modal logic.

e I will also review some of the applications of this approach.
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Modal logic

@ Modal logic is an expressive and yet decidable fragment of
first-order logic.

e This makes it a perfect language to reason about relational
structures.

@ In the form of modal checking it has been successfully used
in specifying and verifying correctness of programs.

@ We will view modal logic as a bridge between spatial and
relational structures.

o I will try to illustrate that modal logic also provides a
powerful tool for spatial reasoning.
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Some history

@ One of the first semantics of modal logic is topological,
introduced some 20 years before Kripke semantics.

@ The pioneers of topological semantics were Tarski (1938),
Tsao-Chen (1938), McKinsey (1941), and McKinsey and
Tarski (1944).

@ They were influenced by the work of Kuratowski (1922)
who axiomatized topological spaces by means of closure
operators.
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Kuratowski’s axioms and S4

Kuratowski’s axioms closely resemble the axioms of Lewis’
modal system S4:

T =0 Ol « 1
c(AUB)=cAUCcB | O(pVq) <> OpV Oq
ACCA p—Op

ccA C cA O0p = Op

X=X T < T
i(ANB)=iANniB | O(pAq) < OpAlq
iIACA Op—p

iA CiiA Op — OOp
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S4 as the logic of topological spaces

@ For a formula ¢ let [p] = {x € X | x = ¢}.

@ Then x = Oy iff x € i[y] and x |= Oy iff x € c[].
@ Thus, (J is interpreted as interior and ¢ as closure.
@ Consequently, each topological space validates S4.

@ The converse is also true, and hence S4 is the logic of all
topological spaces when [ is interpreted as interior and ¢
as closure.

@ But much stronger results hold...
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McKinsey-Tarski Theorem

A topological space is dense-in-itself if every point is a limit
point.

Theorem

(McKinsey-Tarski, 1944) S4 is the logic of an arbitrary
(nonempty) dense-in-itself metric space.

Remark

The original McKinsey-Tarski result had an additional
assumption that the space is separable. In their 1963 book
Rasiowa and Sikorski showed that this additional condition can
be dropped. Their proof uses the Axiom of Choice.
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How to prove the McKinsey-Tarski Theorem

o It is a well-known fact in modal logic that S4 has the finite
model property, meaning that each non-theorem is refuted
on a finite Kripke frame, where the binary relation is
reflexive and transitive. Such frames are called S4-frames.

@ Since refuting a formula at a point x of an S4-frame § only
requires the points from R[x|, we may assume that § is
rooted, meaning that there is a point, called a root, such
that every point is seen from it.

@ Given a dense-in-itself metric space X, the key is to transfer
each such finite refutation to X. This can be done by
defining an onto map f : X — § that behaves like a
p-morphism or functional bisimulation.
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How to prove the McKinsey-Tarski Theorem

@ Such maps are called interior maps in topology, and they
satisfy if “1(A) = f~1(iA) or equivalently ¢f~1(A) = f~1(cA).

@ Interior maps are exactly the maps that are continuous (the
inverse image of an open set is open) and open (the direct
image of an open set is open).

@ Constructing such a map from X onto an arbitrary finite
rooted S4-frame is the main challenge in proving the
McKinsey-Tarski theorem.

@ But as soon as such a map is constructed, the rest of the
proof is easy: each non-theorem ¢ of §4 is refuted on a
finite rooted S4-frame F. Utilizing f : X — §, we can pull
the refutation of ¢ from § to X. Thus, each non-theorem of
S4 is refuted on X, yielding completeness of S4 with respect
to X.
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Easy example

Let X be the real line R and § the two-fork

o @]
[¢]
Define f : R — § by sending O to the root, the negatives to one
maximal node, and the positives to the other maximal node.
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by sending the rationals to one node and the irrationals to the
other.
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Modal dimension

Definition (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2017)
Modal dimension for topological spaces is defined recursively as

follows:
mdim(X) = -1 if X=0,
mdim(X) <n if mdim(D) < n — 1 for D nowhere dense in X,
mdim(X) =n  if mdim(X) < nand mdim(X) £ n—1,
mdim(X) =c0 if mdim(X) g nforanyn=-1,0,1,2,...



Modal dimension

For n > 0, consider the formulas:

bdy = L,
bdn+] = <> (Der_l AN _|bdn) — Pn+1-



Modal dimension

Let g, be the n-element chain.

-
w1

Figure: The n-element chain.



Modal dimension

Theorem (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2017). Let X
be a topological space and n > 1. The following are equivalent:



Modal dimension

Theorem (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2017). Let X
be a topological space and n > 1. The following are equivalent:

Q@ mdim(X) <n-—1.
Q X F bd,.
© 3Fn.1 is not a continuous and open image of X.



Modal dimension
Theorem (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2017). Let X
be a topological space and n > 1. The following are equivalent:

Q@ mdim(X) <n-—1.
Q X F bd,.
© 3Fn.1 is not a continuous and open image of X.

Fact. mdim(Q) = mdim(R) = mdim(R") = cc.



Modal dimension

Theorem (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2017). Let X
be a topological space and n > 1. The following are equivalent:

Q@ mdim(X) <n-—1.
Q X F bd,.
© 3Fn.1 is not a continuous and open image of X.

Fact. mdim(Q) = mdim(R) = mdim(R") = cc.

Theorem (G.B., N.B., J. Lucero-Bryan, J. van Mill, 2021). A
modal logic of the diamond frame is complete wrt a normal
space iff there is a measurable cardinal.
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The logic of intervals

If we consider the smaller Boolean algebra generated by the
open intervals of R, then we can only pick up the two-fork

o\o/o

Theorem (Aiello, van Benthem, G. Bezhanishvili, 2003)

The logic of the two-fork is the logic of the Boolean algebra
generated by the open intervals of R.
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Euclidean hierarchy

McKinsey and Tarski theorem implies that modal logic of each
Euclidean space is S4.

However, we can distinguish the logics of Euclidean spaces of
different dimensions by restricting the valuation to special
subsets.

Theorem (van Benthem, G. Bezhanishvili, Gehrke, 2003)

More generally, there is a decreasing sequence of logics

L, (n > 1) such that each L, is the logic of the Boolean algebra
generated by the open hypercubes in R". Each L, is the logic of
the n-product of the two-fork.

This is the beginning of our story...

This is joint work with Sam Adam-Day (Oxford), David Gabelaia
(Thilisi) and Vincenzo Marra (Milan).



Part 2: Polyhedral semantics of modal logic



Polyhedra

Ne

@ Polyhedra can be of any dimension, and need not be convex
nor connected.

@ Formally: Boolean combination of convex hulls of finite
sets.

o Alternatively they are solution sets of linear inequalities.



Polyhedra
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The Boolean algebra Sub(P)

Theorem

The set of subpolyhedra Sub(P) of a polyhedron P forms a
Boolean algebra closed under interior and closure.

So we arrive at a polyhedral semantics for modal and
intuitionistic logics.
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Polyhedral semantcis

Let P be a polyhedron.
A valuation is a map V : Prop — Sub(P).

This valuation is extended to all modal formulas in a standard
way:

V(Op) =i(V(e)), V(0p) = c(V(p)).
Then P validates ¢ (written: P = ¢) if V() = P under any
valuation V.
In other words, P = ¢ if ¢ is valid in the algebra Sub(P).

Our aim is to investigate this semantics.
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Polyhedral Completeness: Two Approaches

Definition
A logic is polyhedrally complete (poly-complete) if it is the logic
of some class of polyhedra.

We investigate the phenomenon of poly-completeness from two
directions.

© Which logics are poly-complete?

© Given a class of polyhedra, what is its logic?

© Path toward applications.






Triangulations I

Intuition: triangulations break polyhedra up into simple shapes.
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Triangulations II

@ Simplices are the most basic polyhedra of each dimension.
@ Points, line segments, triangles, tetrahedra, pentachora, etc.

A

A triangulation is a splitting up of a polyhedron into finitely
many simplices.

Represented as a poset (3, <) of simplices, where o < 7
means that o is a face of 7.

Its underlying polyhedron is |X| := |J %.

Every polyhedron admits a triangulation.
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(®)
Polyhedral model X' Kripke model M(X)

Figure 7: The polyhedral model X of Figure 17 (7a) and its corresponding Kripke model
M(X) (7b). We indicate a cell by the set of the vertices of the corresponding
simplex. The accessibility relation 2is represented via its Hasse diagram (reflexive
and transitive edges are omitted). The atomic propositions g and r are indicated
in green and red respectively.

o K is the snmphmal partmon of |K| generated by K, as Defined in Lemma 2.4,
. jQKXlethal 25y iff oy < o9, and
e GeV(p)iff 5 CV(p)

where < is the face relation of the simplicial complex K.

Notice that, since =< is reflexive, anti-symmetric and transitive, then so is <. An example of

RV
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(A) A polyhedral model X and
its corresponding Kripke model
M(X).

frontier = {AC,BC,ABC}

(B) Initialization of frontier (lines 4-5).

frontier = {A, AB}
1 A A RO AR
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Triangulation posets

Theorem
The logic of a polyhedron is the logic of its triangulations.

Proof sketch: If P [~ ¢, then there is a finite triangulation ¥ of
P that refutes ¢.

The poset of triangulations contains all the logical information
of P.



The Nerve

Definition (Alexandroff’s nerve)

The nerve, N (F), of a finite poset F is the set of all non-empty
chains in F, ordered by inclusion.

c {a,b,c}
b d {b,c} {a,b} {a,c} {a,d}
< <. o
a by A} A{a} {d}

There is always a p-morphism N (F) — F.



Barycentric Subdivision

Given a triangulation X, construct its barycentric subdivision 3’
by putting a new point in the middle of each simplex, and
forming a new triangulation around it.

AN N \

A

A
VLS

N S

WV

¥ =~ N (X) as posets.

'




Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion) A logic £ is poly-complete if and
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Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion) A logic £ is poly-complete if and
only if it is the logic of a class C of finite frames closed under V.
e This is about barycentric subdivision.
e Let (™ be the nth iterated barycentric subdivision of ¥.

e Intuition: (X(),cy captures everything (logical) about
P =13



Nerves

Theorem (Goes back to Alexandroff). For each finite frame F
there is a polyhedron P and a triangulation of P such that the
face poset X of P is N (F).



Consequences

Theorem
@ The logics S4.Grz and BD,, are poly-complete for every
neN.
@ The logics S4.Grz.2, S4.Grz.3, S4.Grz.3,, BW,, BTW,, and
BC, are poly-incomplete.

@ Moreover, there are continuum-many logics which are
poly-incomplete and have the FMP (stable modal logics).



Consequences

Theorem
@ The logics S4.Grz and BD,, are poly-complete for every
neN.
@ The logics S4.Grz.2, S4.Grz.3, S4.Grz.3,, BW,, BTW,, and
BC, are poly-incomplete.

@ Moreover, there are continuum-many logics which are
poly-incomplete and have the FMP (stable modal logics).

The key idea: (1) use the Nerve Criterion and note that S4.Grz is
the logic of all finite posets and the nerve construction does not
increase the height of a poset.



Consequences

Theorem

@ The logics S4.Grz and BD,, are poly-complete for every
neN.

@ The logics S4.Grz.2, S4.Grz.3, S4.Grz.3,, BW,, BTW,, and
BC, are poly-incomplete.

@ Moreover, there are continuum-many logics which are
poly-incomplete and have the FMP (stable modal logics).

The key idea: (1) use the Nerve Criterion and note that S4.Grz is
the logic of all finite posets and the nerve construction does not
increase the height of a poset.

(2), (3) Note that repeatedly applying N produces wider and
wider frames.



Consequences

Theorem

@ The logics S4.Grz and BD,, are poly-complete for every
neN.

@ The logics S4.Grz.2, S4.Grz.3, S4.Grz.3,, BW,, BTW,, and
BC, are poly-incomplete.

@ Moreover, there are continuum-many logics which are
poly-incomplete and have the FMP (stable modal logics).

The key idea: (1) use the Nerve Criterion and note that S4.Grz is
the logic of all finite posets and the nerve construction does not
increase the height of a poset.

(2), (3) Note that repeatedly applying N produces wider and
wider frames. Are there other poly-complete logics?
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Figure 7.1: example of Lemma 7.8 when n = 2 (left) and n = 3 (right)

7.2 Efficiently bounded triangulations in R’

In this section we prove EffBound(p) for a particular set p C plhdr, (Theorem 7.12). To prove
such a result, we need to be able to build Kripke models whose underlying frames are iterated
barycentric ivisions of tri ions of in p. Since i i are
for an important part built from triangles, it may not be surprising that we have some technical
lemmas about the behaviour of iterated barycentric subdivisions in relation to triangles.

The first lemma describes how to subdivide a triangle into areas that some chosen vertex of the
triangle is the only place where more than two areas meet. Logically, this is interesting for the local
structure at the chosen vertex, without the local structure becoming too complicated elsewhere.

Lemma 7.8. Let 7 be a triangle, x € vte(t), n > 1 and 1 <m < 2"~!. Then there exists a partition
T ={Ty,...,Ty_1} of the set of triangles in fac(7)*" such that:

o #T =m;
o foreach T € .7 there exists T € T withx € T;

o whenever a triangle in 7; and a triangle in T} intersect (other than at x), we have j € {i —
1ii+1};
e all triangles in fac(7)™ that intersect 97\ {x} are in 7,_;.
We omit a proof, since everything happens within the triangle 7 and is therefore easy to vi-
sualize. Some examples are depicted in Figure 7.1. The next lemma describes how to “separate”

two onedimensional polyhedra that lie within some twodimensional polyhedron. It does so by
ividing the i i into a list of areas such that only the first area touches
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Figure 7.2: example of Lemma 7.9 when n = 2 with Ag and A; in pink

of ¥, then there are many different paths from x to y through £\ {&'}. Depending on the path one
chooses, the cells of £*!° visited by the path may have very different values under type,. Had
we started off with a line segment instead of the triangle 7, things would be simpler: avoiding
repetitions there would be a unique path from x to y. Hence we can prove the following lemma.
Lemma 7.11. Let P € [Prop] <0 and ¢ = #2P and n > log,(c* +2¢+1). Let A be a line segment,
Aatriangulation of 2 and gt : A — P a marking. Then there exists a marking  : fac(1)*" — 2P
such that type,, and type,, agree on @ and on the endpoints of 4. -

Proof sketch. Up to simplicial i choosing a tri of A merely amounts to
choosing the number of vertices. fac(4)*" has

2"+ 1>t 242

vertices. Suppose that A has strictly more than ¢* + 2 +2 vertices. Then A has strictly more than
¢*42c+ 1 line segments. Hence, by the pigeonhole principle, there exists a color C C P such that A
has at least ¢ +3 line segments which are mapped to (C,2) by . Note that #( type, [A]) < ¢*+1.
Hence there exist two distinct line segments Ao, 4 € A such that () = (C,2) = u(4) and
type,, (1] = type,, [A], where ITis the subcomplex of A consisting of all cells that do nor lie between
Joand Ay (i.e. [T/ = 2\ Conv ((relntAg) U (rellnt A1))). Then we can remove all vertices between
Ao and Ay, without changing the types of @ and the endpoints of A. Repeating this argument, we
eventually must have that A has at most ¢* + 2¢ + 2 vertices. This proves the lemma. a

Let
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Figure 7.3: sketch of the various [C,x] (pink, red) and (x,C) (red)

For each C € %'(x) with [C,x] # @, choose some 7(x,C) € [C.x]. See Figure 7.3 for the situation
in three triangles of £*"(1). Let n(3) = n(2) + [logy(c* — ¢ +2)] + 1. By Lemma 7.8 (and Lemma
2.50-2) there exists a partition .7 (x,C) = {Tp(x.C),.... Tu_.,;(x,C)} of the set of triangles in
£+70) lying in (x,C) such that

o #T(x,C)=c* —c+2;
e foreach T € .7 (x,C) there exists T € T withx € T;

® whenever a triangle in 7;(x,C) and a triangle in 7;(x,C) intersect (other than at x), we have
Je{i-Liit1);

o all triangles in =) lying in 7(x,C) and intersecting d7(x,C) \ {x} are in Tu_,.,,(x,C).

Let A(x,C) be the subcomplex of £*"(3) with carrier

(U(ean (s} Ju (U o).
Let .
Ao(x,0) = A(x.C) ¥ " (T (x,C)).
Let A (x,C) be the set of cells of A(x,C) that are not x and that have a successor (in £+"(3)) which
is not contained in J[C,x]. Then Ag(x,C) and A;(x,C) are subcomplexes of A(x,C). See Figure
7.4. Itis easy to check that Ag(x,C) and A;(x,C) are disjoint and each have dimension at most 1:

o Their carriers are disjoint because all successors of cells in (F"(” (Ta, (x.C))) \ {x} are

contained in |J[C,x] since <UTch) \{x} C rellnt7(x,C).
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Figure 7.4: sketch of complexes A(x,C) (green), Ag(x,C) (purple) and A, (x,C) (brown)

Letk = [logy(c*)] and n=n(3)+k. By Lemma 7.9 there exists a partition 7”(x,C) = { Ty (x,C),
of the set of triangles in A(x,C)*¥ such that:

o #7'(x,C) = &

 whenever a triangle in 7 (x,C) and a triangle in 7 (x, C) intersect, we have j € {i — 1,i,i+1}:
o all triangles in A(x,C)*™ that intersect |Ag(x,C)| are in Tj(x,C);
o all triangles in A(x,C)** that intersect |A(x,C)| are in T;_, (x,C).

‘We have
n< 43 (logy(ct+1)+1) +4 < +18¢3 +4c* =7
since log (¢* + 1) + 1 < logy(c*) +2 < 4e +2 < 6¢3.
Let
X =vie(D)U || Imfp € vie(z*"M).
De.
For x € X and C € %'(x), we define a set €(x,C) of edge-types as follows. If x € vtc(X), let

€(x,C) = {Eo(x,C),...,Es_y(x.C)}
— typeys [{A’ ey dimA' = 1&x€e A C Uc}} .

1fx = fp(V), let €(x,C) = V.

Observe that G(€(x,C)) is connected in any case: if x = fp(V), this follows from the fact that
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Figure 7.5: the complex A

isomorphic to 1" (x). Hence by Lemma 5.19, the polyhedron | link(®”,x)| has at most two con-
nected components. By Lemma 5.27, it follows that also |link(Z,x)| has at most two components.
The desired result follows from Lemma 5.19.

‘We are now ready for the main result of this section. We shall identify a specific formula,
namely % (A), and a list £,%9,X12,... of simplicial complexes such that

x(8) ¢ Logg (i)
but, if n(k) is the smallest natural number for which x (A) ¢ Log(E,:'"(k)) then
sup {n(6),n(9),n(12),...}
This means that the property expressed by ¥ (A) is sufficiently complex that it cannot be translated

in terms of some fixed amount of iterations of the barycentric subdivision. Hence one could say
that the property expressed by x(A) concerns arbitrarily fine triangulations.




Figure 7.6: the complex X

CHAPTER 7. COMPLEXITY




7.3. UNBOUNDED TRIANGULATIONS IN R*

\

f

Figure 7.7: ion for a p-i

\

from a

of Zg to A

107



Dynamic logics of polyhedra and their application in 3D
modeling

MSc Thesis (Afstudeerscriptie)
written by

Kirill Kopnev
(born 23.11.1999 in Moscow, Russia)

under the supervision of Nick Bezhanishvili and Vincenzo Ciancia, and
submitted to the Examinations Board in partial fulfillment of the requirements for
the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
25.08.2023 dr. Balder ten Cate (chair)
dr. David Gabelaia
dr. Alexandru Baltag
dr. Nick Bezhanishvili (supervisor)
dr. Vincenzo Ciancia (supervisor)

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION



Figure 4.1: The initial 3D model of a building.

3-dimensional simplexes. Along with this data, we also had to specify the propo-
sitions we would assign to the relative interiors of simplexes. In our real-world 3D
meshes, each simplex is associated with some material (e.g. wood. stone, etc.). The
program can be found in the fork of the VoxLogicA at our GitHlub repository* under
the name program. py.

Model checking  Once the file has been parsed, we can write the text file that will
specify the task for our model checker. Figure 4.3 illustrates an example of such
afile. The code is self-explanatory, and we will explain only operations near and
through. Operator near stands for taking the topological closure of simplexes. We
use it to have all the simplexes (i.e. triangles, intervals, and vertices) that satisfy
given variables. Operator trough stands for 4 operator. So, our final variable
house denotes all the points on the wall or floor such that it is possible to reach the
floor from them by passing only through the wall.

In addition to the polyhedra model checker, a visualizer was also presented in
[Bez+22]. It takes as input the . json file with the loaded model and with the output
of PolyLogicA and outputs the visualization of the result. In our case, the visual-
ization of the query formulated in 4.3 can be found in Figure 4.4. One can see that
the result precisely depicts the areas that we wanted to separate.




Figure 4.2: Trinagulated model

In summary, the skeleton of the procedure is as follows:

Take a 3D model and triangulate it;

. Check whether the regions that you want to run your query on are connected;

S

Parse the model in order to obtain a . json file with simplices and materials
for it;

bl

Write the . json file identifying the region that is intended to be extracted;

“w e

Inspect the visualization of the result using the visualizer.

4.2.2 Outlook: efficient model checking for dynamic 3D models.

In this subsection, we present how the theory we developed in the previous chap-
ters can be applied to building a prototype for a model checker of dynamic models.
The definition of dynamic systems we provided in Chapter 3 underpins a more the-
oretical view of the dynamics rather than a view of applications. This is because
the model © = (P, K, R, V') is a monolith in which the entire dynamical compo-
nent of the model is hidden in the relation R. Whereas in reality, when modelling
processes, we deal with a discrete set of states, each of which reflects some partic-
Clar etate of the model Bram thic maint of view real dunamicee recemhloc Qnanchot



Figure 4.4: The top image visualizes the model of the villa in the visualizer of
PolyLogicA, without application of the query from Figure 4.3. The green squares
denote 0 - simplexes, blue lines denote 1 - simplexes, and red planes denote 2 -
simplexes. As we can see, the villa model contains two blocks of building, an ad-
joining territory in front of the left block, and a little patio in front of the right block.
The query in Figure 4.3 aims to separate the two blocks, excluding the adjoining
territory and the patio. The image on the bottom shows a picture after applying
the query from Figure 4.3. The red planes denote the result of the query. We hide
the O-simplexes so that they do not distract us from the result. However, visualizer
leaves empty space in their places. Overall, we can see that the model checker has
extracted exactly two blocks of the building as wanted.
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Polyhedral model checking

Spatial model checking is model checking applied to spatial
structures and spatial logic.

We developed polyhedral model checker to reason about 3D
images.

The key observation is that the poset obtained by a triangulation
keeps all the “logical information” about the polyhedra.

I'll show our prototype.
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ABSTRACT. Topological Spatial Model Checking is a recent paradigm where model checking
techniques are developed for the topological interpretation of Modal Logic. The Spatial
Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that,
in turn, can be used for expressing interesting spatial properties, such as “being near to”
or “being surrounded by”. SLCS constitutes the kernel of a solid logical framework for
reasoning about discrete space, such as graphs and digital images, interpreted as quasi
discrete closure s Following a recently developed geometric semantics of Modal
Logic, we propose an interpretation of SLCS in space, admitting a geometri
spatial model checking procedure, by resorting to models based on polyhedra. Such
representations of space are increasingly relevant in many domains of application, due
to recent developments of 3D scanning and visualisation techniques that exploit mesh
processing. We introduce PolyLogicA, a geometric spatial model checker for SLCS formulas
on polyhedra and demonstrate feasibility of our approach on two 3D polyhedral models of
realistic size. Finally, we introduce a geometric definition of bisimilarity, proving that it
characterises logical equivalence.
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Geometric model checking

We assume that each polyhedron P comes with a fixed
triangulation and its poset X.

Another term: simplicial complex.
We add the reachability modality v(¢, ¥) to our language.
This is a variant of a spatial Until operation.

M, x = v(p, 1) < there exists a path 7 : [0, 1] — P such that
7(0) =x, m(1) € [¢] and 7[(0,1)] < [¢].



Up-down paths

Definition. Let M = (W, <, V) be a poset model.



Up-down paths

Definition. Let M = (W, <, V) be a poset model.

A sequence (wo,...,wy) € W is said to be an up-down path if
k = 2j for some j > 0, wg < w1, Wx_1 = Wy, and whenever
0 < i< j, we have that wy;_1 > wo; < Woj 1.



Up-down paths

Definition. Let M = (W, <, V) be a poset model.

A sequence (wo,...,wy) € W is said to be an up-down path if
k = 2j for some j > 0, wg < w1, Wx_1 = Wy, and whenever
0 < i< j, we have that wy;_1 > wo; < Woj 1.

Thus, an up-down path is a path
Wo SW1p =Wy <Ww3 =...<Wg_1 = Wg.
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Up-down paths

Definition. Let M = (W, <, V) be a poset model.

M, x = v(p, ) iff there is an up-down path (wog,...,wx) CW
such that wo = x, M,wy ¢ and M,w; = ¢ for 0 <i < k.

M, x = Qpiff M, x = v(p, T).

Theorem. A polyhedron P satisfies ¢ iff its poset X satisfies ¢.
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Abstract. In the context of spatial logics and spatial model checking for
polyhedral models — ical basis for visualisations in

space — we propose a weakening of simplicial bisimilarity. We addition-
ally propose a corresponding weak notion of +-bisimilarity on cell-poset
models, discrete representation of polyhedral models. We show that two
points are weakly simplicial bisimilar iff their representations are weakly
+-bisimilar. The advantage of this weaker notion is that it leads to a
stronger reduction of models than its counterpart that was introduced in
our previous work. This is important, since real-world polyhedral mod-
els, such as those found in domains exploiting mesh processing, typically
consist of large numbers of cells. We also propose SLCS,, a weaker ver-
sion of the Spatial Logic for Closure Spaces (SLCS) on polyhedral models,
and we show that the proposed bisi ities enjoy the H sy-Mil
property: two points are weakly simplicial bisimilar iff they are logically
equivalent for SLCS,. Similarly, two cells are weakly +-bisimilar iff they
are logically equivalent in the poset-model interpretation of SLCS,,. This
work is performed in the context of the geometric spatial model checker
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Definition. By picture.

Theorem. Up-down bisimilar worlds satisfy the same formulas.



Up-down bisimulations

Definition. By picture.
Theorem. Up-down bisimilar worlds satisfy the same formulas.

We will use bisimulation quotients.






11,205 cells get reduced to just 7 in the minimal model.



O

. W

(c) Cube 3x5x4 (d) Minimised LTS

Fig. 11: Cubes of dimension 3x5x3 (Fig. 11a) and 3x5x4 (Fig. 11c) and their
respective minimal LTSs (Figs. 11b and 11d).



(c) Minimal model (d) C4 (e) C2 (f) C6

Fig. 6: Cube with 27 rooms: 26 green and one white in the middle.

*

(b) Result ¢ () Result go

Fig. 7: (7a) The 3D cube. Results of PolyLogicA model checking of the formulas
¢1 (7b) and ¢, (7c) on the minimised model mapped back onto the full 3D cube
with PolyVisualizer.
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B: Axiomatization and completeness



Logics of polyhedral reachability

Nick Bezhanishvili

University of Amsterdam, Amsterdam, The Netherlands
Laura Bussi Vincenzo Ciancia
National Research Council, Pisa, Italy

David Fernandez-Duque
University of Barcelona, Barcelona, Spain
David Gabelaia,

TSU Razmadze Mathematical Institute, Thilisi, Georgia

Abstract

P ics is a recently introduced branch of spatial modal logic, in which
modal formulas are interpreted as piecewise linear subsets of an Euclidean space.
Polyhedral semantics for the basic modal language has already been well investigated.
However, for many practical applications of polyhed ics, it is ad

to enrich the basic modal language with a reachability modality. Recently, a language
with an Until-like spatial modality has been introduced, with demonstrated applica-
bility to the analysis of 3D meshes via model checking. In this paper, we exhibit an
axiom system for this logic, and show that it is complete with respect to polyhedral
semantics. The proof consists of two major steps: First, we show that this logic,




Polyhedral reachability logic

Axioms of the Alexandroff reachability logic ALR are given by
all the propositional tautologies and Modus Ponens, S4 axioms
and rules for [J, plus the following:

Axiom 1. ¥V (¢ Av(p,9)) = O(p = v(p,v))
Axiom 2. O(o Ay(p, 1)) — (@, 1))

o= P
(g, ) = (¥ 9)

Y= 0@ —=9) pAO(pAY) =29
Y(p,9) = Ole AY) '

The polyhedral reachability logic PLR is obtained by adding the
Grz axiom O(O(p — Op) — p) — Op to ALR.

Rule 1.

Rule 2.




Soundness

Proof by Picture.
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Completeness

Proof by Filtration.
For ALR we use transitive filtration.
For PLR we use transitive filtration and then cut clusters.

Theorem. ALR and PLR have the finite model property (are
complete for finite models).
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Polyhedral completeness

Suppose ¢ is PLR consistent.

Then there is a finite poset model M such that ¢ is satisfied at M.
Take the nerve N (M) of M.

Lemma: If ¢ is satisfied at M, it is satisfied at N'(M).

Now we construct a polyhedron P from A/ (M) such that
P satisfies v iff V(M) satisfies 1.

So ¢ is satisfied on a polyhedron.

Theorem. PLR is polyhedrally complete.



Thank you!
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