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Def. Continuity on R

Definition

A function f : R→ R is continuous at a ∈ R if

∀ε > 0 ∃δ > 0 s.t. |f (x)− f (a)| < ε whenever |x − a| < δ.

Geometric intuition

If x is close to a, then f (x) is close to f (a).

Navid Kianfar, Jongsung Song, Idske Roest Metric Spaces 2 / 35



Introduction Metric spaces and their properties Metrizability Convergence and Completeness

Continuity of f : R2 → R

Definition

Let f : R2 → R and let (a, b) ∈ R2. We say that f is continuous at
(a, b) if

∀ε > 0 ∃δ > 0 s.t. |f (x , y)− f (a, b)| < ε

whenever
√
(x − a)2 + (y − b)2 < δ.

Euclidean distance in R2

d2
(
(x , y), (a, b)

)
=
√
(x − a)2 + (y − b)2.
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Def. Continuity of f : Rn → R

Definition

Let f : Rn → R and let a = (a1, . . . , an) ∈ Rn. We say that f is
continuous at a if

∀ε > 0 ∃δ > 0 s.t. |f (x)− f (a)| < ε whenever ∥x − a∥2 < δ,

where for x = (x1, . . . , xn),

∥x − a∥2 =

(
n∑

i=1

(xi − ai )
2

)1/2

Idea

Control the output error |f (x)− f (a)| by making x close to a in
Euclidean distance.
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Def. Metric and Metric Space

Definition

Let X ̸= ∅. A function d : X × X → R is a metric if for all
x , y , z ∈ X :

(M1) d(x , y) ≥ 0, and d(x , y) = 0 ⇐⇒ x = y .

(M2) d(x , y) = d(y , x).

(M3) d(x , z) ≤ d(x , y) + d(y , z).

A metric space is a pair (X , d).

Interpretation

(M1) no negative distances; (M2) symmetry; (M3) triangle
inequality.
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Def. Continuity between Metric Spaces

Definition

Let (X , dX ) and (Y , dY ) be metric spaces and f : X → Y . We say
f is continuous at x0 ∈ X if

∀ε > 0 ∃δ > 0 s.t. dY
(
f (x), f (x0)

)
< ε whenever dX (x , x0) < δ.

f is continuous if it is continuous at every x0 ∈ X .

Idea

Small changes in input (in dX ) force small changes in output (in
dY ).
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Example: The Euclidean Metric on Rn

Example

For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, define

d2(x , y) =

(
n∑

i=1

(xi − yi )
2

)1/2

.

Then d2 is a metric on Rn.

Proof.

(M1) d2(x , y) ≥ 0 and d2(x , y) = 0 forces each xi = yi ,
hence x = y .

(M2) Symmetry: (xi − yi )
2 = (yi − xi )

2.

(M3) Triangle inequality follows from Cauchy–Schwarz:
(Continued on next page)

∑
ri si ≤

(∑
r2i

)1/2(∑
s2i

)1/2
, applied to r = x − y and

s = y − z , giving d2(x , z) ≤ d2(x , y) + d2(y , z)

Navid Kianfar, Jongsung Song, Idske Roest Metric Spaces 7 / 35



Introduction Metric spaces and their properties Metrizability Convergence and Completeness

Example: The Euclidean Metric on Rn

continue Proof: (M3).

To be shown: for all x , y , z ∈ Rn:(
n∑

i=1

(xi − zi )
2

)1/2

≤

(
n∑

i=1

(xi − yi )
2

)1/2

+

(
n∑

i=1

(yi − zi )
2

)1/2

⇔
n∑

i=1

(xi − zi )
2 ≤

( n∑
i=1

(xi − yi )
2

)1/2

+

(
n∑

i=1

(yi − zi )
2

)1/2
2

=
∑n

i=1(xi − yi )
2 +

∑n
i=1(yi − zi )

2 +

2
(∑n

i=1(xi − yi )
2
)1/2 (∑n

i=1(yi − zi )
2
)1/2

(Continued on next page)
...
...
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Example: The Euclidean Metric on Rn

continue Proof: (M3).

Now use xi − zi = (xi − yi ) + (yi − zi ) and expand:

n∑
i=1

(xi − zi )
2 =

n∑
i=1

(
(xi − yi ) + (yi − zi )

)2
=

n∑
i=1

(xi − yi )
2 +

n∑
i=1

(yi − zi )
2 + 2

n∑
i=1

(xi − yi )(yi − zi )

So it remains to show

n∑
i=1

(xi − yi )(yi − zi ) ≤

(
n∑

i=1

(xi − yi )
2

)1/2( n∑
i=1

(yi − zi )
2

)1/2

,

which holds by the Cauchy–Schwarz–ineq (square both sides!).
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Def. Open Balls

Definition

In a metric space (X , d), the open ball of radius r > 0 centered at
x0 ∈ X is

Br (x0) = {x ∈ X : d(x , x0) < r}.

Example

(a) In (R, | · |):
Br (x0) = (x0 − r , x0 + r).

(b) In (R2, d2): Br (x0) is an open disc of radius r .

(c) In (R3, d2): Br (x0) is an open ball of radius r .
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Continuity via Open Balls

Proposition

Let f : (X , dX )→ (Y , dY ) and fix x0 ∈ X. Then f is continuous at
x0 iff

∀ε > 0 ∃δ > 0 s.t. f
(
BdX
δ (x0)

)
⊆ BdY

ε

(
f (x0)

)
.

Same content as ε–δ

“Points δ-close to x0 map to points ε-close to f (x0).”
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Def. Open Sets in a Metric Space

Definition

Let (X , d) be a metric space and U ⊆ X . We call U open (or
d-open) if

∀x ∈ U ∃ε > 0 s.t. Bd
ε (x) ⊆ U.

Example

Any open interval (a, b) in R is open in R,
but not [a, b], [a, b), (a, b]
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Continuity and Preimages of Open Sets

Proposition

Let f : (X , dX )→ (Y , dY ). Then f is continuous iff for every open
set V ⊆ Y , the preimage

f −1(V ) = {x ∈ X : f (x) ∈ V }

is open in X .
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Metric to Topological

Any metric space induces a topological space.

Proposition

Given a metric space (X , d), we have (X , τd) is a topological
space, where for any U ⊆ X

U ∈ τd iff U is d-open in X .

Recall: definition of d-open

For every x ∈ U, there exists ϵ > 0 such that Bd
ϵ (x) ⊆ U.

Navid Kianfar, Jongsung Song, Idske Roest Metric Spaces 15 / 35



Introduction Metric spaces and their properties Metrizability Convergence and Completeness

Is (X , τd) actually a topological space? Let’s check!

O2 Closure under arbitrary union:
Let (Ui )i∈I ⊆ τd , and x ∈

⋃
i∈I Ui arbitrary. Then x ∈ Uj for

some j ∈ I . Since Uj is open by assumption, there exists ϵ > 0
s.t. Bϵ(x) ⊆ Uj . This implies Bϵ(x) ⊆

⋃
i∈I Ui . Hence,⋃

i∈I Ui ∈ τd as desired.
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Metrizability

Definition (Metrizable spaces)

A topological space arising from a metric space in this way is called
metrizable.

Example

The discrete topology is metrizable.

The Euclidean topology is metrizable
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What Makes a Space Metrizable?

How can we tell that a space is metrizable?

Proposition

Any metrizable space is Hausdorff.

Proof.

Let (X , d) be a metric space, and consider τd . If x , y ∈ X with

x ̸= y , then d(x , y) > 0. Consider ϵ := d(x ,y)
2 Then, the open balls

Bϵ(x),Bϵ(y) are disjoint open sets containing x and y
respectively.
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Metrization Theorems

But what about the other direction?

Theorem (Urysohn’s metrization theorem)

Every topological space that is normal and second-countable is
metrizable.
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Normal and Second-countable

Recall

X normal if whenever E ,F disjoint closed subsets of X , then there
exist open sets U,V with E ⊆ U and F ⊆ V such that U ∩V = ∅.

Definition (Second-countable)

A topological space is second-countable if it has a countable base.
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Proof Sketch Urysohn’s Metrization Theorem

Lemma (Urysohn’s lemma)

A topological space (X , τ) is normal if, and only if, for every pair
of nonempty, closed, disjoint subsets E ,F ⊆ X, there is a
continuous function f : X → [0, 1] such that f (x) = 0 for all
x ∈ E, and f (x) = 1 for all x ∈ F .
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Proof sketch Urysohn’s Metrization Theorem

Idea:

Apply Urysohn’s lemma countably many times.

We get a countable family of continuous functions
{fn : X → [0, 1]}n∈N.
For any x ∈ X and neighbourhood U of x , some fm is strictly
positive at x , and 0 outside U ← second-countability.

Define F : X → RN, x 7→ (f1(x), f2(x), . . . ). Can be checked
that this is a homeomorphism into its image F (X ).

RN with the product topology is metrizable.
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Example: Non-metrizable Spaces

{0, 1} with indiscrete topology is not Hausdorff.

Sorgenfrey line is not second-countable.

Navid Kianfar, Jongsung Song, Idske Roest Metric Spaces 23 / 35



Introduction Metric spaces and their properties Metrizability Convergence and Completeness

Table of Contents

1 Introduction

2 Metric spaces and their properties

3 Metrizability

4 Convergence and Completeness

Navid Kianfar, Jongsung Song, Idske Roest Metric Spaces 24 / 35



Introduction Metric spaces and their properties Metrizability Convergence and Completeness

Sequence & Convergence

Definition (Sequence)

Given a metric space (X , d), a sequence on this space is a map
s : N→ X commonly denoted as (xn), having xn = s(n).

Definition (Convergence)

A sequence (xn) converges to a point x , if for any ϵ > 0, there is
some N ∈ N such that d(xn, x) < ϵ for any n ≥ N.
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Sequence & Convergence (Cont.)

Example

The sequence (xn) defined as xn = 1
n , n ∈ N converges to the

limit point 0.

Consider some non-empty metric space containing at least 2

points x and y . The sequence xn =

{
x , if n is even,

y , else.
does

not converge.

Note: A converging sequence converges to a unique point.
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Cauchy Sequences

Definition (Cauchy Sequence)

A sequence defined on a metric space (X , d) is said to be Cauchy,
if for any ϵ > 0 there is some N ∈ N such that for all n,m > N we
have d(xn, xm) < ϵ.

Proposition

All convergent sequences are Cauchy.
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Metric Definitions Using Convergence

Suppose (X , d) is a metric space.

Definition (Limit point)

A point x in a space X is called a limit point of a subset A ⊆ X , if
given any ϵ > 0 we have Bϵ \ {x} ∩ A ̸= ∅. In other words, there is
some close neighbor other than x itself that intersects A.

Proposition (Limit point (alt. def.))

A point x in a space X is deemed a limit point of a subset A ⊆ X,
if there is a sequence (xn) having {xn} ⊆ A \ {x} which converges
to x.

Limit points formalize the notion of a point being infinitely close to
a set without actually being a part of it.
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Metric Definitions Using Convergence (Cont.)

Definition (Closed set)

A set A is closed if for any x ∈ X and ϵ > 0 we have
Bϵ(x) ∩ A ̸= ∅, then x ∈ A.

Proposition (Closed set (alt. def.))

A set A is closed if for any (xn) ⊆ A converging to x, we have
x ∈ A.

I.e., a set is closed iff it contains all of its limit points.
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Metric Definitions Using Convergence (Cont.)
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Metric Definitions Using Convergence (Cont.)

Assume we have two metric spaces (X , dX ) and (Y , dY ), and a
map f : X → Y . The statements below are equivalent.

Proposition

The function f is continuous.

For every x ∈ X, whenever Bϵ(f (x)) ⊆ Y , we have some
f (Bδ(x)) ⊆ Bϵ(f (x)).

If a sequence (xn) ⊆ X converges to x; then the sequence
(f (xn)) converges to f (x).

for every S ⊆ X, f (S) ⊆ f (S).

Informally, in context of metric spaces, continuity means respecting
distance, which can alternatively be put as respecting the
correspondence between limit points.
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Completeness

You might have encountered the fact that the real line has no
gaps. What does this precisely mean?

Definition (Completeness)

Let (X , d) be a metric space. The set X is said to be complete
with respect to the metric d , if every Cauchy sequence in X ,
converges to a point in X .

Example

The set (0,∞) equipped with d(x , y) = |x − y | is not
complete. Why?
The aforementioned sequence (xn) = (1/n).

The same set equipped with the discrete metric is complete.
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Completeness (Cont.)

Completeness portrays a notion of gapless-ness as it contains all
the points that are infinitely close to it—analogous to how a closed
set (or the closure of a set) contains all of its limit points.
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Completeness in Topology

We have now seen that fundamental notions of metric spaces
can be abstracted to topology.

How about completeness? The answer is no.

Take the space R with the euclidean topology, and its induced
subspace (0, 1). We know from the lectures that R ∼= (0, 1).

But one is complete and the other isn’t.
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Thank you for your time!
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