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Top , Kr , Nb all have similar nice properties
and let 's characterize them

.



Definitions



Def. C concrete category & construct )

Let X be a category . A concrete category over X
is a pair (t, U)

,
where A is a category and U :-#X

is

the operation

Hema. la. .az ) → Homie Va . .ua. ) A X

t ↳ Uf
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is injective ,
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( w he- X is set
, CA , U) is called construct)
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Def
.
(fibre )

Let CA
, U) be a concrete category over K .

The fibre of anX- object x is the preordered
class consisting of all A- objects A with UCA) =X ordered by :

A E B iff idx : VA →UB is an A-morphism
.
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Def ( topological functor & topological category ) :
A functor A EsD is called topological provided

that every G - structured source (B tis GA i )
g has a

unique G - initial lift ( A A :)
,
.

A concrete category
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Topological Duality Theorem

If It, U) is topological overX ,
then (A

"

? UOP) is
topological over Xo ?

the existence of unique U- initial lifts of U- structured
sources implies the existence of unique U - final lifts of
U - structured sinks .
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Some useful Implications
sup t -98

• The U - fibre over any object in D is a complete
lattice

. → think of in Ty
.

• U lifts lcdlimits uniquely . → think of woodcut topology
° If B is 6) complete

, so is A
.

→ Set is Ccolwmplete
He

Top is also
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- the coarsest that makes

log : the inclusion i continuous
.

the subspace topology i :(Y
,

↳ K , -1×1
the finest that makes the surjective

map a continuousthe quotient topology a :(X. c-⇒→ (sits )
the product topology the coarsest

. .

the copraduct topology the finest .
.
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More examples & non- examples
The category of i rreflexive graphs X

It has no terminal object
A

not complete

Initial lifts preserve refl
, trans , symmetry . . .

A
the corresponding full subcategories of Kr like preord . Equiv .✓

a a
But not antisymmetry

•⇐ .

( no unique initial lifts)
" ips t t

the category of poset is not topological over sets X
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Fulp← with a set p of proposition variables fixed
. ⑧

Objects : ( X, V)
1
.

If

I :p-spy , t.JO. .
.

. IET
\ I r

Morphisms : f : (X ,V ) → C'f.w) '

;

satisfying VE f
-low X = Tj
-

Fact : The product of a family Xilie of 1. ④
b

! → ob !faiatopological categories can still be seen as a

topological category .

e-9. Frame → Model x
: I y

F : Kr → # V) : Kri El
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Modal Reasoning pattern,
Universal structures in Teqcat

Model Dependence ⇐ partial Orders within fibres
( Kab ) ( E )

Group structure c→ Lattice operations within fibres
(ummontdistributed knowledge) ( v.A)

Logical Dynamics → Connections between fibres
( public announcement

, ( f-
*

. ti
.

)

product update )



Model Dependence a partial Orders within fibres
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Group structure c→ Lattice operations within fibres
(u-mmonfdistn.ba-led knowledge) (VA )
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Logical Dynamics → Connections between fibres
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Logical Dynamics ←7 Connections between fibres
( product update ) ( f-
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Modal Reasoning Patterns Universal structures in Mcat

Model Dependence ⇐ partial Orders within fibres
( Kab ) ( E )

Group structure c→ Lattice operations within fibres
(ummonfdistributed knowledge) ( v.A)
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We can translate between e.g. pre↳ Top
semantic models ! sends a preorder to its

1611 -- Eakin.
A LB Alexandretta topology

↳ ( transformation F F commutes with the
that greeves the interpretation ⇒ semantic structure A

of synthetic pattern corresponds to .

Kab preserves arbitrary meets fibre -wise
[1.434 preserve the initial lifts of injections

[ E. e) 4 + preserves pullback mapsohfibre-wisefinite meets
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What I didn't cover :

• View topological categories as functors A- : Set → SupLaf
via Grothendieck construction

Or A
-

: Seto

P-sznfhaf.CA
BAO giving the algebraic semantics

say EAX
( Kr , Top ,Nb can be embedded into CABAO ) r
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